# 提供可稳定复现性能的脚本,默认在标准docker环境内py37执行: paddlepaddle/paddle:latest-gpu-cuda10.1-cudnn7 paddle=2.1.2 py=37 # 执行目录:需说明 CUR_DIR=${PWD} # PaddleSpeech/tests/benchmark/conformer cd ../../../ log_path=${LOG_PATH_INDEX_DIR:-$(pwd)} # benchmark系统指定该参数,不需要跑profile时,log_path指向存speed的目录 cd ${CUR_DIR} sed -i '/set\ -xe/d' run_benchmark.sh #cd ** pushd ../../../examples/aishell/asr1 # 1 安装该模型需要的依赖 (如需开启优化策略请注明) # 2 拷贝该模型需要数据、预训练模型 source path.sh source ${MAIN_ROOT}/utils/parse_options.sh || exit 1; mkdir -p conf/benchmark #yq e ".training.accum_grad=1" conf/conformer.yaml > conf/benchmark/conformer.yaml cp conf/conformer.yaml conf/benchmark/conformer.yaml sed -i "s/ accum_grad: 2/ accum_grad: 1/g" conf/benchmark/conformer.yaml fp_item_list=(fp32) bs_item=(16) config_path=conf/benchmark/conformer.yaml seed=0 output=exp/conformer profiler_options=None model_item=conformer for fp_item in ${fp_item_list[@]}; do for bs_item in ${bs_item[@]} do rm exp -rf log_name=speech_${model_item}_bs${bs_item}_${fp_item} # 如:clas_MobileNetv1_mp_bs32_fp32_8 echo "index is speed, 8gpus, run_mode is multi_process, begin, conformer" run_mode=mp ngpu=8 CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash ${CUR_DIR}/run_benchmark.sh ${run_mode} ${config_path} ${output} ${seed} ${ngpu} ${profiler_options} ${bs_item} ${fp_item} ${model_item} | tee ${log_path}/${log_name}_speed_8gpus8p 2>&1 sleep 60 log_name=speech_${model_item}_bs${bs_item}_${fp_item} # 如:clas_MobileNetv1_mp_bs32_fp32_8 echo "index is speed, 1gpus, begin, ${log_name}" run_mode=sp ngpu=1 CUDA_VISIBLE_DEVICES=0 bash ${CUR_DIR}/run_benchmark.sh ${run_mode} ${config_path} ${output} ${seed} ${ngpu} ${profiler_options} ${bs_item} ${fp_item} ${model_item} | tee ${log_path}/${log_name}_speed_1gpus 2>&1 # (5min) sleep 60 done done popd