# This is the configuration file for CSMSC dataset.This configuration is based # on StyleMelGAN paper but uses MSE loss instead of Hinge loss. And I found that # batch_size = 8 is also working good. So maybe if you want to accelerate the training, # you can reduce the batch size (e.g. 8 or 16). Upsampling scales is modified to # fit the shift size 300 pt. # NOTE: batch_max_steps(24000) == prod(noise_upsample_scales)(80) * prod(upsample_scales)(300) ########################################################### # FEATURE EXTRACTION SETTING # ########################################################### fs: 24000 # Sampling rate. n_fft: 2048 # FFT size (samples). n_shift: 300 # Hop size (samples). 12.5ms win_length: 1200 # Window length (samples). 50ms # If set to null, it will be the same as fft_size. window: "hann" # Window function. n_mels: 80 # Number of mel basis. fmin: 80 # Minimum freq in mel basis calculation. (Hz) fmax: 7600 # Maximum frequency in mel basis calculation. (Hz) ########################################################### # GENERATOR NETWORK ARCHITECTURE SETTING # ########################################################### generator_params: in_channels: 128 # Number of input channels. aux_channels: 80 channels: 64 # Initial number of channels for conv layers. out_channels: 1 # Number of output channels. kernel_size: 9 # Kernel size of initial and final conv layers. dilation: 2 bias: True noise_upsample_scales: [10, 2, 2, 2] noise_upsample_activation: "leakyrelu" noise_upsample_activation_params: negative_slope: 0.2 upsample_scales: [5, 1, 5, 1, 3, 1, 2, 2, 1] # List of Upsampling scales. prod(upsample_scales) == n_shift upsample_mode: "nearest" gated_function: "softmax" use_weight_norm: True # Whether to use weight normalization. ########################################################### # DISCRIMINATOR NETWORK ARCHITECTURE SETTING # ########################################################### discriminator_params: repeats: 4 window_sizes: [512, 1024, 2048, 4096] pqmf_params: - [1, None, None, None] - [2, 62, 0.26700, 9.0] - [4, 62, 0.14200, 9.0] - [8, 62, 0.07949, 9.0] discriminator_params: out_channels: 1 # Number of output channels. kernel_sizes: [5, 3] # List of kernel size. channels: 16 # Number of channels of the initial conv layer. max_downsample_channels: 512 # Maximum number of channels of downsampling layers. bias: True downsample_scales: [4, 4, 4, 1] # List of downsampling scales. nonlinear_activation: "leakyrelu" # Nonlinear activation function. nonlinear_activation_params: # Parameters of nonlinear activation function. negative_slope: 0.2 use_weight_norm: True # Whether to use weight norm. ########################################################### # STFT LOSS SETTING # ########################################################### use_stft_loss: true stft_loss_params: fft_sizes: [1024, 2048, 512] # List of FFT size for STFT-based loss. hop_sizes: [120, 240, 50] # List of hop size for STFT-based loss win_lengths: [600, 1200, 240] # List of window length for STFT-based loss. window: "hann" # Window function for STFT-based loss lambda_aux: 1.0 # Loss balancing coefficient for aux loss. ########################################################### # ADVERSARIAL LOSS SETTING # ########################################################### lambda_adv: 1.0 # Loss balancing coefficient for adv loss. generator_adv_loss_params: average_by_discriminators: false # Whether to average loss by #discriminators. discriminator_adv_loss_params: average_by_discriminators: false # Whether to average loss by #discriminators. ########################################################### # DATA LOADER SETTING # ########################################################### batch_size: 32 # Batch size. # batch_max_steps(24000) == prod(noise_upsample_scales)(80) * prod(upsample_scales)(300, n_shift) batch_max_steps: 24000 # Length of each audio in batch. Make sure dividable by n_shift. num_workers: 2 # Number of workers in Pytorch DataLoader. ########################################################### # OPTIMIZER & SCHEDULER SETTING # ########################################################### generator_optimizer_params: beta1: 0.5 beta2: 0.9 weight_decay: 0.0 # Generator's weight decay coefficient. generator_scheduler_params: learning_rate: 1.0e-4 # Generator's learning rate. gamma: 0.5 # Generator's scheduler gamma. milestones: # At each milestone, lr will be multiplied by gamma. - 100000 - 300000 - 500000 - 700000 - 900000 generator_grad_norm: -1 # Generator's gradient norm. discriminator_optimizer_params: beta1: 0.5 beta2: 0.9 weight_decay: 0.0 # Discriminator's weight decay coefficient. discriminator_scheduler_params: learning_rate: 2.0e-4 # Discriminator's learning rate. gamma: 0.5 # Discriminator's scheduler gamma. milestones: # At each milestone, lr will be multiplied by gamma. - 200000 - 400000 - 600000 - 800000 discriminator_grad_norm: -1 # Discriminator's gradient norm. ########################################################### # INTERVAL SETTING # ########################################################### discriminator_train_start_steps: 100000 # Number of steps to start to train discriminator. train_max_steps: 1500000 # Number of training steps. save_interval_steps: 5000 # Interval steps to save checkpoint. eval_interval_steps: 1000 # Interval steps to evaluate the network. ########################################################### # OTHER SETTING # ########################################################### num_snapshots: 10 # max number of snapshots to keep while training seed: 42 # random seed for paddle, random, and np.random