# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Reference chainer MIT (https://opensource.org/licenses/MIT) import sys import traceback from collections import OrderedDict from pathlib import Path from typing import Callable from typing import List from typing import Union import six import tqdm from paddlespeech.s2t.training.extensions.extension import Extension from paddlespeech.s2t.training.extensions.extension import PRIORITY_READER from paddlespeech.s2t.training.reporter import ObsScope from paddlespeech.s2t.training.triggers import get_trigger from paddlespeech.s2t.training.triggers.limit_trigger import LimitTrigger from paddlespeech.s2t.training.updaters.updater import UpdaterBase class _ExtensionEntry(): def __init__(self, extension, trigger, priority): self.extension = extension self.trigger = trigger self.priority = priority class Trainer(): def __init__(self, updater: UpdaterBase, stop_trigger: Callable=None, out: Union[str, Path]='result', extensions: List[Extension]=None): self.updater = updater self.extensions = OrderedDict() self.stop_trigger = LimitTrigger(*stop_trigger) self.out = Path(out) self.observation = None self._done = False if extensions: for ext in extensions: self.extend(ext) @property def is_before_training(self): return self.updater.state.iteration == 0 def extend(self, extension, name=None, trigger=None, priority=None): # get name for the extension # argument \ # -> extention's name \ # -> default_name (class name, when it is an object) \ # -> function name when it is a function \ # -> error if name is None: name = getattr(extension, 'name', None) if name is None: name = getattr(extension, 'default_name', None) if name is None: name = getattr(extension, '__name__', None) if name is None: raise ValueError("Name is not given for the extension.") if name == 'training': raise ValueError("training is a reserved name.") if trigger is None: trigger = getattr(extension, 'trigger', (1, 'iteration')) trigger = get_trigger(trigger) if priority is None: priority = getattr(extension, 'priority', PRIORITY_READER) # add suffix to avoid nameing conflict ordinal = 0 modified_name = name while modified_name in self.extensions: ordinal += 1 modified_name = f"{name}_{ordinal}" extension.name = modified_name self.extensions[modified_name] = _ExtensionEntry(extension, trigger, priority) def get_extension(self, name): """get extension by name.""" extensions = self.extensions if name in extensions: return extensions[name].extension else: raise ValueError(f'extension {name} not found') def run(self): if self._done: raise RuntimeError("Training is already done!.") self.out.mkdir(parents=True, exist_ok=True) # sort extensions by priorities once extension_order = sorted( self.extensions.keys(), key=lambda name: self.extensions[name].priority, reverse=True) extensions = [(name, self.extensions[name]) for name in extension_order] # initializing all extensions for name, entry in extensions: if hasattr(entry.extension, "initialize"): entry.extension.initialize(self) update = self.updater.update # training step stop_trigger = self.stop_trigger # display only one progress bar max_iteration = None if isinstance(stop_trigger, LimitTrigger): if stop_trigger.unit == 'epoch': max_epoch = self.stop_trigger.limit updates_per_epoch = getattr(self.updater, "updates_per_epoch", None) max_iteration = max_epoch * updates_per_epoch if updates_per_epoch else None else: max_iteration = self.stop_trigger.limit p = tqdm.tqdm(initial=self.updater.state.iteration, total=max_iteration) try: while not stop_trigger(self): self.observation = {} # set observation as the `report` target # you can use `report` freely in Updater.update() # updating parameters and state with ObsScope(self.observation): update() p.update() # execute extension when necessary for name, entry in extensions: if entry.trigger(self): entry.extension(self) # print("###", self.observation) except Exception as e: f = sys.stderr f.write(f"Exception in main training loop: {e}\n") f.write("Traceback (most recent call last):\n") traceback.print_tb(sys.exc_info()[2]) f.write( "Trainer extensions will try to handle the extension. Then all extensions will finalize." ) # capture the exception in the mian training loop exc_info = sys.exc_info() # try to handle it for name, entry in extensions: if hasattr(entry.extension, "on_error"): try: entry.extension.on_error(self, e, sys.exc_info()[2]) except Exception as ee: f.write(f"Exception in error handler: {ee}\n") f.write('Traceback (most recent call last):\n') traceback.print_tb(sys.exc_info()[2]) # raise exception in main training loop six.reraise(*exc_info) finally: for name, entry in extensions: if hasattr(entry.extension, "finalize"): entry.extension.finalize(self)