# https://yaml.org/type/float.html data: train_manifest: data/manifest.train dev_manifest: data/manifest.dev test_manifest: data/manifest.test min_input_len: 0.0 max_input_len: 27.0 # second min_output_len: 0.0 max_output_len: .inf min_output_input_ratio: 0.00 max_output_input_ratio: .inf collator: batch_size: 64 # one gpu mean_std_filepath: data/mean_std.json unit_type: char vocab_filepath: data/lang_char/vocab.txt augmentation_config: conf/augmentation.json random_seed: 0 spm_model_prefix: spectrum_type: linear #linear, mfcc, fbank feat_dim: delta_delta: False stride_ms: 10.0 window_ms: 20.0 n_fft: None max_freq: None target_sample_rate: 16000 use_dB_normalization: True target_dB: -20 dither: 1.0 keep_transcription_text: False sortagrad: True shuffle_method: batch_shuffle num_workers: 0 model: num_conv_layers: 2 num_rnn_layers: 5 rnn_layer_size: 1024 rnn_direction: forward # [forward, bidirect] num_fc_layers: 0 fc_layers_size_list: -1, use_gru: False blank_id: 0 training: n_epoch: 65 accum_grad: 1 lr: 5e-4 lr_decay: 0.93 weight_decay: 1e-06 global_grad_clip: 3.0 log_interval: 100 checkpoint: kbest_n: 50 latest_n: 5 decoding: batch_size: 32 error_rate_type: cer decoding_method: ctc_beam_search lang_model_path: data/lm/zh_giga.no_cna_cmn.prune01244.klm alpha: 2.2 #1.9 beta: 4.3 beam_size: 300 cutoff_prob: 0.99 cutoff_top_n: 40 num_proc_bsearch: 10