# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from pathlib import Path import numpy as np import paddle import soundfile as sf import yaml from paddle import jit from paddle.static import InputSpec from yacs.config import CfgNode from paddlespeech.s2t.utils.dynamic_import import dynamic_import from paddlespeech.t2s.frontend import English from paddlespeech.t2s.frontend.zh_frontend import Frontend from paddlespeech.t2s.modules.normalizer import ZScore model_alias = { # acoustic model "speedyspeech": "paddlespeech.t2s.models.speedyspeech:SpeedySpeech", "speedyspeech_inference": "paddlespeech.t2s.models.speedyspeech:SpeedySpeechInference", "fastspeech2": "paddlespeech.t2s.models.fastspeech2:FastSpeech2", "fastspeech2_inference": "paddlespeech.t2s.models.fastspeech2:FastSpeech2Inference", # voc "pwgan": "paddlespeech.t2s.models.parallel_wavegan:PWGGenerator", "pwgan_inference": "paddlespeech.t2s.models.parallel_wavegan:PWGInference", "mb_melgan": "paddlespeech.t2s.models.melgan:MelGANGenerator", "mb_melgan_inference": "paddlespeech.t2s.models.melgan:MelGANInference", "style_melgan": "paddlespeech.t2s.models.melgan:StyleMelGANGenerator", "style_melgan_inference": "paddlespeech.t2s.models.melgan:StyleMelGANInference", "hifigan": "paddlespeech.t2s.models.hifigan:HiFiGANGenerator", "hifigan_inference": "paddlespeech.t2s.models.hifigan:HiFiGANInference", } def evaluate(args): # Init body. with open(args.am_config) as f: am_config = CfgNode(yaml.safe_load(f)) with open(args.voc_config) as f: voc_config = CfgNode(yaml.safe_load(f)) print("========Args========") print(yaml.safe_dump(vars(args))) print("========Config========") print(am_config) print(voc_config) # construct dataset for evaluation sentences = [] with open(args.text, 'rt') as f: for line in f: items = line.strip().split() utt_id = items[0] if args.lang == 'zh': sentence = "".join(items[1:]) elif args.lang == 'en': sentence = " ".join(items[1:]) sentences.append((utt_id, sentence)) with open(args.phones_dict, "r") as f: phn_id = [line.strip().split() for line in f.readlines()] vocab_size = len(phn_id) print("vocab_size:", vocab_size) tone_size = None if args.tones_dict: with open(args.tones_dict, "r") as f: tone_id = [line.strip().split() for line in f.readlines()] tone_size = len(tone_id) print("tone_size:", tone_size) spk_num = None if args.speaker_dict: with open(args.speaker_dict, 'rt') as f: spk_id = [line.strip().split() for line in f.readlines()] spk_num = len(spk_id) print("spk_num:", spk_num) # frontend if args.lang == 'zh': frontend = Frontend( phone_vocab_path=args.phones_dict, tone_vocab_path=args.tones_dict) elif args.lang == 'en': frontend = English(phone_vocab_path=args.phones_dict) print("frontend done!") # acoustic model odim = am_config.n_mels # model: {model_name}_{dataset} am_name = args.am[:args.am.rindex('_')] am_dataset = args.am[args.am.rindex('_') + 1:] am_class = dynamic_import(am_name, model_alias) am_inference_class = dynamic_import(am_name + '_inference', model_alias) if am_name == 'fastspeech2': am = am_class( idim=vocab_size, odim=odim, spk_num=spk_num, **am_config["model"]) elif am_name == 'speedyspeech': am = am_class( vocab_size=vocab_size, tone_size=tone_size, **am_config["model"]) am.set_state_dict(paddle.load(args.am_ckpt)["main_params"]) am.eval() am_mu, am_std = np.load(args.am_stat) am_mu = paddle.to_tensor(am_mu) am_std = paddle.to_tensor(am_std) am_normalizer = ZScore(am_mu, am_std) am_inference = am_inference_class(am_normalizer, am) am_inference.eval() print("acoustic model done!") # vocoder # model: {model_name}_{dataset} voc_name = args.voc[:args.voc.rindex('_')] voc_class = dynamic_import(voc_name, model_alias) voc_inference_class = dynamic_import(voc_name + '_inference', model_alias) voc = voc_class(**voc_config["generator_params"]) voc.set_state_dict(paddle.load(args.voc_ckpt)["generator_params"]) voc.remove_weight_norm() voc.eval() voc_mu, voc_std = np.load(args.voc_stat) voc_mu = paddle.to_tensor(voc_mu) voc_std = paddle.to_tensor(voc_std) voc_normalizer = ZScore(voc_mu, voc_std) voc_inference = voc_inference_class(voc_normalizer, voc) voc_inference.eval() print("voc done!") # whether dygraph to static if args.inference_dir: # acoustic model if am_name == 'fastspeech2': if am_dataset in {"aishell3", "vctk"} and args.speaker_dict: print( "Haven't test dygraph to static for multi speaker fastspeech2 now!" ) else: am_inference = jit.to_static( am_inference, input_spec=[InputSpec([-1], dtype=paddle.int64)]) paddle.jit.save(am_inference, os.path.join(args.inference_dir, args.am)) am_inference = paddle.jit.load( os.path.join(args.inference_dir, args.am)) elif am_name == 'speedyspeech': am_inference = jit.to_static( am_inference, input_spec=[ InputSpec([-1], dtype=paddle.int64), InputSpec([-1], dtype=paddle.int64) ]) paddle.jit.save(am_inference, os.path.join(args.inference_dir, args.am)) am_inference = paddle.jit.load( os.path.join(args.inference_dir, args.am)) # vocoder voc_inference = jit.to_static( voc_inference, input_spec=[ InputSpec([-1, 80], dtype=paddle.float32), ]) paddle.jit.save(voc_inference, os.path.join(args.inference_dir, args.voc)) voc_inference = paddle.jit.load( os.path.join(args.inference_dir, args.voc)) output_dir = Path(args.output_dir) output_dir.mkdir(parents=True, exist_ok=True) for utt_id, sentence in sentences: get_tone_ids = False if am_name == 'speedyspeech': get_tone_ids = True if args.lang == 'zh': input_ids = frontend.get_input_ids( sentence, merge_sentences=True, get_tone_ids=get_tone_ids) phone_ids = input_ids["phone_ids"] phone_ids = phone_ids[0] if get_tone_ids: tone_ids = input_ids["tone_ids"] tone_ids = tone_ids[0] elif args.lang == 'en': input_ids = frontend.get_input_ids(sentence) phone_ids = input_ids["phone_ids"] else: print("lang should in {'zh', 'en'}!") with paddle.no_grad(): # acoustic model if am_name == 'fastspeech2': # multi speaker if am_dataset in {"aishell3", "vctk"}: spk_id = paddle.to_tensor(args.spk_id) mel = am_inference(phone_ids, spk_id) else: mel = am_inference(phone_ids) elif am_name == 'speedyspeech': mel = am_inference(phone_ids, tone_ids) # vocoder wav = voc_inference(mel) sf.write( str(output_dir / (utt_id + ".wav")), wav.numpy(), samplerate=am_config.fs) print(f"{utt_id} done!") def main(): # parse args and config and redirect to train_sp parser = argparse.ArgumentParser( description="Synthesize with acoustic model & vocoder") # acoustic model parser.add_argument( '--am', type=str, default='fastspeech2_csmsc', choices=[ 'speedyspeech_csmsc', 'fastspeech2_csmsc', 'fastspeech2_ljspeech', 'fastspeech2_aishell3', 'fastspeech2_vctk' ], help='Choose acoustic model type of tts task.') parser.add_argument( '--am_config', type=str, default=None, help='Config of acoustic model. Use deault config when it is None.') parser.add_argument( '--am_ckpt', type=str, default=None, help='Checkpoint file of acoustic model.') parser.add_argument( "--am_stat", type=str, default=None, help="mean and standard deviation used to normalize spectrogram when training acoustic model." ) parser.add_argument( "--phones_dict", type=str, default=None, help="phone vocabulary file.") parser.add_argument( "--tones_dict", type=str, default=None, help="tone vocabulary file.") parser.add_argument( "--speaker_dict", type=str, default=None, help="speaker id map file.") parser.add_argument( '--spk_id', type=int, default=0, help='spk id for multi speaker acoustic model') # vocoder parser.add_argument( '--voc', type=str, default='pwgan_csmsc', choices=[ 'pwgan_csmsc', 'pwgan_ljspeech', 'pwgan_aishell3', 'pwgan_vctk', 'mb_melgan_csmsc', 'style_melgan_csmsc', 'hifigan_csmsc' ], help='Choose vocoder type of tts task.') parser.add_argument( '--voc_config', type=str, default=None, help='Config of voc. Use deault config when it is None.') parser.add_argument( '--voc_ckpt', type=str, default=None, help='Checkpoint file of voc.') parser.add_argument( "--voc_stat", type=str, default=None, help="mean and standard deviation used to normalize spectrogram when training voc." ) # other parser.add_argument( '--lang', type=str, default='zh', help='Choose model language. zh or en') parser.add_argument( "--inference_dir", type=str, default=None, help="dir to save inference models") parser.add_argument( "--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.") parser.add_argument( "--text", type=str, help="text to synthesize, a 'utt_id sentence' pair per line.") parser.add_argument("--output_dir", type=str, help="output dir.") args = parser.parse_args() if args.ngpu == 0: paddle.set_device("cpu") elif args.ngpu > 0: paddle.set_device("gpu") else: print("ngpu should >= 0 !") evaluate(args) if __name__ == "__main__": main()