# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Beam search module.""" from itertools import chain from typing import Any from typing import Dict from typing import List from typing import NamedTuple from typing import Tuple from typing import Union import paddle from ..scorers.scorer_interface import PartialScorerInterface from ..scorers.scorer_interface import ScorerInterface from ..utils import end_detect from deepspeech.utils.log import Log logger = Log(__name__).getlog() class Hypothesis(NamedTuple): """Hypothesis data type.""" yseq: paddle.Tensor # (T,) score: Union[float, paddle.Tensor] = 0 scores: Dict[str, Union[float, paddle.Tensor]] = dict() states: Dict[str, Any] = dict() def asdict(self) -> dict: """Convert data to JSON-friendly dict.""" return self._replace( yseq=self.yseq.tolist(), score=float(self.score), scores={k: float(v) for k, v in self.scores.items()}, )._asdict() class BeamSearch(paddle.nn.Layer): """Beam search implementation.""" def __init__( self, scorers: Dict[str, ScorerInterface], weights: Dict[str, float], beam_size: int, vocab_size: int, sos: int, eos: int, token_list: List[str]=None, pre_beam_ratio: float=1.5, pre_beam_score_key: str=None, ): """Initialize beam search. Args: scorers (dict[str, ScorerInterface]): Dict of decoder modules e.g., Decoder, CTCPrefixScorer, LM The scorer will be ignored if it is `None` weights (dict[str, float]): Dict of weights for each scorers The scorer will be ignored if its weight is 0 beam_size (int): The number of hypotheses kept during search vocab_size (int): The number of vocabulary sos (int): Start of sequence id eos (int): End of sequence id token_list (list[str]): List of tokens for debug log pre_beam_score_key (str): key of scores to perform pre-beam search pre_beam_ratio (float): beam size in the pre-beam search will be `int(pre_beam_ratio * beam_size)` """ super().__init__() # set scorers self.weights = weights self.scorers = dict() # all = full + partial self.full_scorers = dict() # full tokens self.part_scorers = dict() # partial tokens # this module dict is required for recursive cast # `self.to(device, dtype)` in `recog.py` self.nn_dict = paddle.nn.LayerDict() # nn.Layer for k, v in scorers.items(): w = weights.get(k, 0) if w == 0 or v is None: continue assert isinstance( v, ScorerInterface ), f"{k} ({type(v)}) does not implement ScorerInterface" self.scorers[k] = v if isinstance(v, PartialScorerInterface): self.part_scorers[k] = v else: self.full_scorers[k] = v if isinstance(v, paddle.nn.Layer): self.nn_dict[k] = v # set configurations self.sos = sos self.eos = eos self.token_list = token_list # pre_beam_size > beam_size self.pre_beam_size = int(pre_beam_ratio * beam_size) self.beam_size = beam_size self.n_vocab = vocab_size if (pre_beam_score_key is not None and pre_beam_score_key != "full" and pre_beam_score_key not in self.full_scorers): raise KeyError( f"{pre_beam_score_key} is not found in {self.full_scorers}") # selected `key` scorer to do pre beam search self.pre_beam_score_key = pre_beam_score_key # do_pre_beam when need, valid and has part_scorers self.do_pre_beam = (self.pre_beam_score_key is not None and self.pre_beam_size < self.n_vocab and len(self.part_scorers) > 0) def init_hyp(self, x: paddle.Tensor) -> List[Hypothesis]: """Get an initial hypothesis data. Args: x (paddle.Tensor): The encoder output feature, (T, D) Returns: Hypothesis: The initial hypothesis. """ init_states = dict() init_scores = dict() for k, d in self.scorers.items(): init_states[k] = d.init_state(x) init_scores[k] = 0.0 return [ Hypothesis( yseq=paddle.to_tensor([self.sos], place=x.place), score=0.0, scores=init_scores, states=init_states, ) ] @staticmethod def append_token(xs: paddle.Tensor, x: Union[int, paddle.Tensor]) -> paddle.Tensor: """Append new token to prefix tokens. Args: xs (paddle.Tensor): The prefix token, (T,) x (int): The new token to append Returns: paddle.Tensor: (T+1,), New tensor contains: xs + [x] with xs.dtype and xs.device """ x = paddle.to_tensor([x], dtype=xs.dtype) if isinstance(x, int) else x return paddle.concat((xs, x)) def score_full(self, hyp: Hypothesis, x: paddle.Tensor ) -> Tuple[Dict[str, paddle.Tensor], Dict[str, Any]]: """Score new hypothesis by `self.full_scorers`. Args: hyp (Hypothesis): Hypothesis with prefix tokens to score x (paddle.Tensor): Corresponding input feature, (T, D) Returns: Tuple[Dict[str, paddle.Tensor], Dict[str, Any]]: Tuple of score dict of `hyp` that has string keys of `self.full_scorers` and tensor score values of shape: `(self.n_vocab,)`, and state dict that has string keys and state values of `self.full_scorers` """ scores = dict() states = dict() for k, d in self.full_scorers.items(): # scores[k] shape (self.n_vocab,) scores[k], states[k] = d.score(hyp.yseq, hyp.states[k], x) return scores, states def score_partial(self, hyp: Hypothesis, ids: paddle.Tensor, x: paddle.Tensor ) -> Tuple[Dict[str, paddle.Tensor], Dict[str, Any]]: """Score new hypothesis by `self.part_scorers`. Args: hyp (Hypothesis): Hypothesis with prefix tokens to score ids (paddle.Tensor): 1D tensor of new partial tokens to score, len(ids) < n_vocab x (paddle.Tensor): Corresponding input feature, (T, D) Returns: Tuple[Dict[str, paddle.Tensor], Dict[str, Any]]: Tuple of score dict of `hyp` that has string keys of `self.part_scorers` and tensor score values of shape: `(len(ids),)`, and state dict that has string keys and state values of `self.part_scorers` """ scores = dict() states = dict() for k, d in self.part_scorers.items(): # scores[k] shape (len(ids),) scores[k], states[k] = d.score_partial(hyp.yseq, ids, hyp.states[k], x) return scores, states def beam(self, weighted_scores: paddle.Tensor, ids: paddle.Tensor) -> Tuple[paddle.Tensor, paddle.Tensor]: """Compute topk full token ids and partial token ids. Args: weighted_scores (paddle.Tensor): The weighted sum scores for each tokens. Its shape is `(self.n_vocab,)`. ids (paddle.Tensor): The partial token ids(Global) to compute topk. Returns: Tuple[paddle.Tensor, paddle.Tensor]: The topk full token ids and partial token ids. Their shapes are `(self.beam_size,)`. i.e. (global ids, global relative local ids). """ # no pre beam performed, `ids` equal to `weighted_scores` if weighted_scores.size(0) == ids.size(0): top_ids = weighted_scores.topk( self.beam_size)[1] # index in n_vocab return top_ids, top_ids # mask pruned in pre-beam not to select in topk tmp = weighted_scores[ids] weighted_scores[:] = -float("inf") weighted_scores[ids] = tmp # top_ids no equal to local_ids, since ids shape not same top_ids = weighted_scores.topk(self.beam_size)[1] # index in n_vocab local_ids = weighted_scores[ids].topk( self.beam_size)[1] # index in len(ids) return top_ids, local_ids @staticmethod def merge_scores( prev_scores: Dict[str, float], next_full_scores: Dict[str, paddle.Tensor], full_idx: int, next_part_scores: Dict[str, paddle.Tensor], part_idx: int, ) -> Dict[str, paddle.Tensor]: """Merge scores for new hypothesis. Args: prev_scores (Dict[str, float]): The previous hypothesis scores by `self.scorers` next_full_scores (Dict[str, paddle.Tensor]): scores by `self.full_scorers` full_idx (int): The next token id for `next_full_scores` next_part_scores (Dict[str, paddle.Tensor]): scores of partial tokens by `self.part_scorers` part_idx (int): The new token id for `next_part_scores` Returns: Dict[str, paddle.Tensor]: The new score dict. Its keys are names of `self.full_scorers` and `self.part_scorers`. Its values are scalar tensors by the scorers. """ new_scores = dict() for k, v in next_full_scores.items(): new_scores[k] = prev_scores[k] + v[full_idx] for k, v in next_part_scores.items(): new_scores[k] = prev_scores[k] + v[part_idx] return new_scores def merge_states(self, states: Any, part_states: Any, part_idx: int) -> Any: """Merge states for new hypothesis. Args: states: states of `self.full_scorers` part_states: states of `self.part_scorers` part_idx (int): The new token id for `part_scores` Returns: Dict[str, paddle.Tensor]: The new score dict. Its keys are names of `self.full_scorers` and `self.part_scorers`. Its values are states of the scorers. """ new_states = dict() for k, v in states.items(): new_states[k] = v for k, d in self.part_scorers.items(): new_states[k] = d.select_state(part_states[k], part_idx) return new_states def search(self, running_hyps: List[Hypothesis], x: paddle.Tensor) -> List[Hypothesis]: """Search new tokens for running hypotheses and encoded speech x. Args: running_hyps (List[Hypothesis]): Running hypotheses on beam x (paddle.Tensor): Encoded speech feature (T, D) Returns: List[Hypotheses]: Best sorted hypotheses """ best_hyps = [] part_ids = paddle.arange(self.n_vocab) # no pre-beam for hyp in running_hyps: # scoring weighted_scores = paddle.zeros([self.n_vocab], dtype=x.dtype) scores, states = self.score_full(hyp, x) for k in self.full_scorers: weighted_scores += self.weights[k] * scores[k] # partial scoring if self.do_pre_beam: pre_beam_scores = (weighted_scores if self.pre_beam_score_key == "full" else scores[self.pre_beam_score_key]) part_ids = paddle.topk(pre_beam_scores, self.pre_beam_size)[1] part_scores, part_states = self.score_partial(hyp, part_ids, x) for k in self.part_scorers: weighted_scores[part_ids] += self.weights[k] * part_scores[k] # add previous hyp score weighted_scores += hyp.score # update hyps for j, part_j in zip(*self.beam(weighted_scores, part_ids)): # `part_j` is `j` relative id in `part_scores` # will be (2 x beam at most) best_hyps.append( Hypothesis( score=weighted_scores[j], yseq=self.append_token(hyp.yseq, j), scores=self.merge_scores(hyp.scores, scores, j, part_scores, part_j), states=self.merge_states(states, part_states, part_j), )) # sort and prune 2 x beam -> beam best_hyps = sorted( best_hyps, key=lambda x: x.score, reverse=True)[:min(len(best_hyps), self.beam_size)] return best_hyps def forward(self, x: paddle.Tensor, maxlenratio: float=0.0, minlenratio: float=0.0) -> List[Hypothesis]: """Perform beam search. Args: x (paddle.Tensor): Encoded speech feature (T, D) maxlenratio (float): Input length ratio to obtain max output length. If maxlenratio=0.0 (default), it uses a end-detect function to automatically find maximum hypothesis lengths If maxlenratio<0.0, its absolute value is interpreted as a constant max output length. minlenratio (float): Input length ratio to obtain min output length. Returns: list[Hypothesis]: N-best decoding results """ # set length bounds if maxlenratio == 0: maxlen = x.shape[0] elif maxlenratio < 0: maxlen = -1 * int(maxlenratio) else: maxlen = max(1, int(maxlenratio * x.size(0))) minlen = int(minlenratio * x.size(0)) logger.info("decoder input length: " + str(x.shape[0])) logger.info("max output length: " + str(maxlen)) logger.info("min output length: " + str(minlen)) # main loop of prefix search running_hyps = self.init_hyp(x) ended_hyps = [] for i in range(maxlen): logger.debug("position " + str(i)) best = self.search(running_hyps, x) # post process of one iteration running_hyps = self.post_process(i, maxlen, maxlenratio, best, ended_hyps) # end detection if maxlenratio == 0.0 and end_detect( [h.asdict() for h in ended_hyps], i): logger.info(f"end detected at {i}") break if len(running_hyps) == 0: logger.info("no hypothesis. Finish decoding.") break else: logger.debug(f"remained hypotheses: {len(running_hyps)}") nbest_hyps = sorted(ended_hyps, key=lambda x: x.score, reverse=True) # check the number of hypotheses reaching to eos if len(nbest_hyps) == 0: logger.warning("there is no N-best results, perform recognition " "again with smaller minlenratio.") return ([] if minlenratio < 0.1 else self.forward(x, maxlenratio, max(0.0, minlenratio - 0.1))) # report the best result best = nbest_hyps[0] for k, v in best.scores.items(): logger.info( f"{float(v):6.2f} * {self.weights[k]:3} = {float(v) * self.weights[k]:6.2f} for {k}" ) logger.info(f"total log probability: {float(best.score):.2f}") logger.info( f"normalized log probability: {float(best.score) / len(best.yseq):.2f}" ) logger.info(f"total number of ended hypotheses: {len(nbest_hyps)}") if self.token_list is not None: # logger.info( # "best hypo: " # + "".join([self.token_list[x] for x in best.yseq[1:-1]]) # + "\n" # ) logger.info("best hypo: " + "".join( [self.token_list[x] for x in best.yseq[1:]]) + "\n") return nbest_hyps def post_process( self, i: int, maxlen: int, maxlenratio: float, running_hyps: List[Hypothesis], ended_hyps: List[Hypothesis], ) -> List[Hypothesis]: """Perform post-processing of beam search iterations. Args: i (int): The length of hypothesis tokens. maxlen (int): The maximum length of tokens in beam search. maxlenratio (int): The maximum length ratio in beam search. running_hyps (List[Hypothesis]): The running hypotheses in beam search. ended_hyps (List[Hypothesis]): The ended hypotheses in beam search. Returns: List[Hypothesis]: The new running hypotheses. """ logger.debug(f"the number of running hypotheses: {len(running_hyps)}") if self.token_list is not None: logger.debug("best hypo: " + "".join( [self.token_list[x] for x in running_hyps[0].yseq[1:]])) # add eos in the final loop to avoid that there are no ended hyps if i == maxlen - 1: logger.info("adding in the last position in the loop") running_hyps = [ h._replace(yseq=self.append_token(h.yseq, self.eos)) for h in running_hyps ] # add ended hypotheses to a final list, and removed them from current hypotheses # (this will be a problem, number of hyps < beam) remained_hyps = [] for hyp in running_hyps: if hyp.yseq[-1] == self.eos: # e.g., Word LM needs to add final score for k, d in chain(self.full_scorers.items(), self.part_scorers.items()): s = d.final_score(hyp.states[k]) hyp.scores[k] += s hyp = hyp._replace(score=hyp.score + self.weights[k] * s) ended_hyps.append(hyp) else: remained_hyps.append(hyp) return remained_hyps def beam_search( x: paddle.Tensor, sos: int, eos: int, beam_size: int, vocab_size: int, scorers: Dict[str, ScorerInterface], weights: Dict[str, float], token_list: List[str]=None, maxlenratio: float=0.0, minlenratio: float=0.0, pre_beam_ratio: float=1.5, pre_beam_score_key: str="full", ) -> list: """Perform beam search with scorers. Args: x (paddle.Tensor): Encoded speech feature (T, D) sos (int): Start of sequence id eos (int): End of sequence id beam_size (int): The number of hypotheses kept during search vocab_size (int): The number of vocabulary scorers (dict[str, ScorerInterface]): Dict of decoder modules e.g., Decoder, CTCPrefixScorer, LM The scorer will be ignored if it is `None` weights (dict[str, float]): Dict of weights for each scorers The scorer will be ignored if its weight is 0 token_list (list[str]): List of tokens for debug log maxlenratio (float): Input length ratio to obtain max output length. If maxlenratio=0.0 (default), it uses a end-detect function to automatically find maximum hypothesis lengths minlenratio (float): Input length ratio to obtain min output length. pre_beam_score_key (str): key of scores to perform pre-beam search pre_beam_ratio (float): beam size in the pre-beam search will be `int(pre_beam_ratio * beam_size)` Returns: List[Dict]: N-best decoding results """ ret = BeamSearch( scorers, weights, beam_size=beam_size, vocab_size=vocab_size, pre_beam_ratio=pre_beam_ratio, pre_beam_score_key=pre_beam_score_key, sos=sos, eos=eos, token_list=token_list, ).forward( x=x, maxlenratio=maxlenratio, minlenratio=minlenratio) return [h.asdict() for h in ret]