# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.initializer as I class RnnLm(nn.Layer): def __init__(self, vocab_size, punc_size, hidden_size, num_layers=1, init_scale=0.1, dropout=0.0): super(RnnLm, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.init_scale = init_scale self.punc_size = punc_size self.embedder = nn.Embedding( vocab_size, hidden_size, weight_attr=paddle.ParamAttr(initializer=I.Uniform( low=-init_scale, high=init_scale))) self.lstm = nn.LSTM( input_size=hidden_size, hidden_size=hidden_size, num_layers=num_layers, dropout=dropout, weight_ih_attr=paddle.ParamAttr(initializer=I.Uniform( low=-init_scale, high=init_scale)), weight_hh_attr=paddle.ParamAttr(initializer=I.Uniform( low=-init_scale, high=init_scale))) self.fc = nn.Linear( hidden_size, punc_size, weight_attr=paddle.ParamAttr(initializer=I.Uniform( low=-init_scale, high=init_scale)), bias_attr=paddle.ParamAttr(initializer=I.Uniform( low=-init_scale, high=init_scale))) self.dropout = nn.Dropout(p=dropout) self.softmax = nn.Softmax() def forward(self, inputs): x = inputs x_emb = self.embedder(x) x_emb = self.dropout(x_emb) y, (_, _) = self.lstm(x_emb) y = self.dropout(y) y = self.fc(y) y = paddle.reshape(y, shape=[-1, self.punc_size]) logit = self.softmax(y) return y, logit class CrossEntropyLossForLm(nn.Layer): def __init__(self): super(CrossEntropyLossForLm, self).__init__() def forward(self, y, label): label = paddle.unsqueeze(label, axis=2) loss = paddle.nn.functional.cross_entropy( input=y, label=label, reduction='none') loss = paddle.squeeze(loss, axis=[2]) loss = paddle.mean(loss, axis=[0]) loss = paddle.sum(loss) return loss