# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any from typing import List from typing import Tuple from typing import Union import paddle from paddle import nn from paddle.fluid import core from paddle.nn import functional as F from deepspeech.utils.log import Log #TODO(Hui Zhang): remove fluid import logger = Log(__name__).getlog() ########### hcak logging ############# logger.warn = logger.warning ########### hcak paddle ############# paddle.half = 'float16' paddle.float = 'float32' paddle.double = 'float64' paddle.short = 'int16' paddle.int = 'int32' paddle.long = 'int64' paddle.uint16 = 'uint16' paddle.cdouble = 'complex128' def convert_dtype_to_string(tensor_dtype): """ Convert the data type in numpy to the data type in Paddle Args: tensor_dtype(core.VarDesc.VarType): the data type in numpy. Returns: core.VarDesc.VarType: the data type in Paddle. """ dtype = tensor_dtype if dtype == core.VarDesc.VarType.FP32: return paddle.float32 elif dtype == core.VarDesc.VarType.FP64: return paddle.float64 elif dtype == core.VarDesc.VarType.FP16: return paddle.float16 elif dtype == core.VarDesc.VarType.INT32: return paddle.int32 elif dtype == core.VarDesc.VarType.INT16: return paddle.int16 elif dtype == core.VarDesc.VarType.INT64: return paddle.int64 elif dtype == core.VarDesc.VarType.BOOL: return paddle.bool elif dtype == core.VarDesc.VarType.BF16: # since there is still no support for bfloat16 in NumPy, # uint16 is used for casting bfloat16 return paddle.uint16 elif dtype == core.VarDesc.VarType.UINT8: return paddle.uint8 elif dtype == core.VarDesc.VarType.INT8: return paddle.int8 elif dtype == core.VarDesc.VarType.COMPLEX64: return paddle.complex64 elif dtype == core.VarDesc.VarType.COMPLEX128: return paddle.complex128 else: raise ValueError("Not supported tensor dtype %s" % dtype) if not hasattr(paddle, 'softmax'): logger.debug("register user softmax to paddle, remove this when fixed!") setattr(paddle, 'softmax', paddle.nn.functional.softmax) if not hasattr(paddle, 'log_softmax'): logger.debug("register user log_softmax to paddle, remove this when fixed!") setattr(paddle, 'log_softmax', paddle.nn.functional.log_softmax) if not hasattr(paddle, 'sigmoid'): logger.debug("register user sigmoid to paddle, remove this when fixed!") setattr(paddle, 'sigmoid', paddle.nn.functional.sigmoid) if not hasattr(paddle, 'log_sigmoid'): logger.debug("register user log_sigmoid to paddle, remove this when fixed!") setattr(paddle, 'log_sigmoid', paddle.nn.functional.log_sigmoid) if not hasattr(paddle, 'relu'): logger.debug("register user relu to paddle, remove this when fixed!") setattr(paddle, 'relu', paddle.nn.functional.relu) def cat(xs, dim=0): return paddle.concat(xs, axis=dim) if not hasattr(paddle, 'cat'): logger.debug( "override cat of paddle if exists or register, remove this when fixed!") paddle.cat = cat ########### hcak paddle.Tensor ############# def item(x: paddle.Tensor): return x.numpy().item() if not hasattr(paddle.Tensor, 'item'): logger.debug( "override item of paddle.Tensor if exists or register, remove this when fixed!" ) paddle.Tensor.item = item def func_long(x: paddle.Tensor): return paddle.cast(x, paddle.long) if not hasattr(paddle.Tensor, 'long'): logger.debug( "override long of paddle.Tensor if exists or register, remove this when fixed!" ) paddle.Tensor.long = func_long if not hasattr(paddle.Tensor, 'numel'): logger.debug( "override numel of paddle.Tensor if exists or register, remove this when fixed!" ) paddle.Tensor.numel = paddle.numel def new_full(x: paddle.Tensor, size: Union[List[int], Tuple[int], paddle.Tensor], fill_value: Union[float, int, bool, paddle.Tensor], dtype=None): return paddle.full(size, fill_value, dtype=x.dtype) if not hasattr(paddle.Tensor, 'new_full'): logger.debug( "override new_full of paddle.Tensor if exists or register, remove this when fixed!" ) paddle.Tensor.new_full = new_full def eq(xs: paddle.Tensor, ys: Union[paddle.Tensor, float]) -> paddle.Tensor: if convert_dtype_to_string(xs.dtype) == paddle.bool: xs = xs.astype(paddle.int) return xs.equal( paddle.to_tensor( ys, dtype=convert_dtype_to_string(xs.dtype), place=xs.place)) if not hasattr(paddle.Tensor, 'eq'): logger.debug( "override eq of paddle.Tensor if exists or register, remove this when fixed!" ) paddle.Tensor.eq = eq if not hasattr(paddle, 'eq'): logger.debug( "override eq of paddle if exists or register, remove this when fixed!") paddle.eq = eq def contiguous(xs: paddle.Tensor) -> paddle.Tensor: return xs if not hasattr(paddle.Tensor, 'contiguous'): logger.debug( "override contiguous of paddle.Tensor if exists or register, remove this when fixed!" ) paddle.Tensor.contiguous = contiguous def size(xs: paddle.Tensor, *args: int) -> paddle.Tensor: nargs = len(args) assert (nargs <= 1) s = paddle.shape(xs) if nargs == 1: return s[args[0]] else: return s #`to_static` do not process `size` property, maybe some `paddle` api dependent on it. logger.debug( "override size of paddle.Tensor " "(`to_static` do not process `size` property, maybe some `paddle` api dependent on it), remove this when fixed!" ) paddle.Tensor.size = size def view(xs: paddle.Tensor, *args: int) -> paddle.Tensor: return xs.reshape(args) if not hasattr(paddle.Tensor, 'view'): logger.debug("register user view to paddle.Tensor, remove this when fixed!") paddle.Tensor.view = view def view_as(xs: paddle.Tensor, ys: paddle.Tensor) -> paddle.Tensor: return xs.reshape(ys.size()) if not hasattr(paddle.Tensor, 'view_as'): logger.debug( "register user view_as to paddle.Tensor, remove this when fixed!") paddle.Tensor.view_as = view_as def is_broadcastable(shp1, shp2): for a, b in zip(shp1[::-1], shp2[::-1]): if a == 1 or b == 1 or a == b: pass else: return False return True def masked_fill(xs: paddle.Tensor, mask: paddle.Tensor, value: Union[float, int]): assert is_broadcastable(xs.shape, mask.shape) is True bshape = paddle.broadcast_shape(xs.shape, mask.shape) mask = mask.broadcast_to(bshape) trues = paddle.ones_like(xs) * value xs = paddle.where(mask, trues, xs) return xs if not hasattr(paddle.Tensor, 'masked_fill'): logger.debug( "register user masked_fill to paddle.Tensor, remove this when fixed!") paddle.Tensor.masked_fill = masked_fill def masked_fill_(xs: paddle.Tensor, mask: paddle.Tensor, value: Union[float, int]) -> paddle.Tensor: assert is_broadcastable(xs.shape, mask.shape) is True bshape = paddle.broadcast_shape(xs.shape, mask.shape) mask = mask.broadcast_to(bshape) trues = paddle.ones_like(xs) * value ret = paddle.where(mask, trues, xs) paddle.assign(ret.detach(), output=xs) return xs if not hasattr(paddle.Tensor, 'masked_fill_'): logger.debug( "register user masked_fill_ to paddle.Tensor, remove this when fixed!") paddle.Tensor.masked_fill_ = masked_fill_ def fill_(xs: paddle.Tensor, value: Union[float, int]) -> paddle.Tensor: val = paddle.full_like(xs, value) paddle.assign(val.detach(), output=xs) return xs if not hasattr(paddle.Tensor, 'fill_'): logger.debug( "register user fill_ to paddle.Tensor, remove this when fixed!") paddle.Tensor.fill_ = fill_ def repeat(xs: paddle.Tensor, *size: Any) -> paddle.Tensor: return paddle.tile(xs, size) if not hasattr(paddle.Tensor, 'repeat'): logger.debug( "register user repeat to paddle.Tensor, remove this when fixed!") paddle.Tensor.repeat = repeat if not hasattr(paddle.Tensor, 'softmax'): logger.debug( "register user softmax to paddle.Tensor, remove this when fixed!") setattr(paddle.Tensor, 'softmax', paddle.nn.functional.softmax) if not hasattr(paddle.Tensor, 'sigmoid'): logger.debug( "register user sigmoid to paddle.Tensor, remove this when fixed!") setattr(paddle.Tensor, 'sigmoid', paddle.nn.functional.sigmoid) if not hasattr(paddle.Tensor, 'relu'): logger.debug("register user relu to paddle.Tensor, remove this when fixed!") setattr(paddle.Tensor, 'relu', paddle.nn.functional.relu) def type_as(x: paddle.Tensor, other: paddle.Tensor) -> paddle.Tensor: return x.astype(other.dtype) if not hasattr(paddle.Tensor, 'type_as'): logger.debug( "register user type_as to paddle.Tensor, remove this when fixed!") setattr(paddle.Tensor, 'type_as', type_as) def to(x: paddle.Tensor, *args, **kwargs) -> paddle.Tensor: assert len(args) == 1 if isinstance(args[0], str): # dtype return x.astype(args[0]) elif isinstance(args[0], paddle.Tensor): #Tensor return x.astype(args[0].dtype) else: # Device return x if not hasattr(paddle.Tensor, 'to'): logger.debug("register user to to paddle.Tensor, remove this when fixed!") setattr(paddle.Tensor, 'to', to) def func_float(x: paddle.Tensor) -> paddle.Tensor: return x.astype(paddle.float) if not hasattr(paddle.Tensor, 'float'): logger.debug( "register user float to paddle.Tensor, remove this when fixed!") setattr(paddle.Tensor, 'float', func_float) def func_int(x: paddle.Tensor) -> paddle.Tensor: return x.astype(paddle.int) if not hasattr(paddle.Tensor, 'int'): logger.debug("register user int to paddle.Tensor, remove this when fixed!") setattr(paddle.Tensor, 'int', func_int) def tolist(x: paddle.Tensor) -> List[Any]: return x.numpy().tolist() if not hasattr(paddle.Tensor, 'tolist'): logger.debug( "register user tolist to paddle.Tensor, remove this when fixed!") setattr(paddle.Tensor, 'tolist', tolist) # hack loss def ctc_loss(logits, labels, input_lengths, label_lengths, blank=0, reduction='mean', norm_by_times=True, norm_by_batchsize=False, norm_by_total_logits_len=False): #logger.info("my ctc loss with norm by times") ## https://github.com/PaddlePaddle/Paddle/blob/f5ca2db2cc/paddle/fluid/operators/warpctc_op.h#L403 loss_out = paddle.fluid.layers.warpctc( logits, labels, blank, norm_by_times, input_lengths, label_lengths, norm_by_batchsize, ) loss_out = paddle.fluid.layers.squeeze(loss_out, [-1]) assert reduction in ['mean', 'sum', 'none'] if reduction == 'mean': loss_out = paddle.mean(loss_out / label_lengths) elif reduction == 'sum': loss_out = paddle.sum(loss_out) return loss_out logger.debug( "override ctc_loss of paddle.nn.functional if exists, remove this when fixed!" ) F.ctc_loss = ctc_loss