# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from paddle import nn from paddle.nn import functional as F from typeguard import check_argument_types from deepspeech.modules.loss import CTCLoss from deepspeech.utils import ctc_utils from deepspeech.utils.log import Log logger = Log(__name__).getlog() try: from deepspeech.decoders.ctcdecoder.swig_wrapper import ctc_beam_search_decoder_batch # noqa: F401 from deepspeech.decoders.ctcdecoder.swig_wrapper import ctc_greedy_decoder # noqa: F401 from deepspeech.decoders.ctcdecoder.swig_wrapper import Scorer # noqa: F401 except Exception as e: logger.info("ctcdecoder not installed!") __all__ = ['CTCDecoder'] class CTCDecoderBase(nn.Layer): def __init__(self, odim, enc_n_units, blank_id=0, dropout_rate: float=0.0, reduction: bool=True, batch_average: bool=True, grad_norm_type: str="instance"): """CTC decoder Args: odim ([int]): text vocabulary size enc_n_units ([int]): encoder output dimention dropout_rate (float): dropout rate (0.0 ~ 1.0) reduction (bool): reduce the CTC loss into a scalar, True for 'sum' or 'none' batch_average (bool): do batch dim wise average. grad_norm_type (str): one of 'instance', 'batch', 'frame', None. """ assert check_argument_types() super().__init__() self.blank_id = blank_id self.odim = odim self.dropout = nn.Dropout(dropout_rate) self.ctc_lo = nn.Linear(enc_n_units, self.odim) reduction_type = "sum" if reduction else "none" self.criterion = CTCLoss( blank=self.blank_id, reduction=reduction_type, batch_average=batch_average, grad_norm_type=grad_norm_type) def forward(self, hs_pad, hlens, ys_pad, ys_lens): """Calculate CTC loss. Args: hs_pad (Tensor): batch of padded hidden state sequences (B, Tmax, D) hlens (Tensor): batch of lengths of hidden state sequences (B) ys_pad (Tenosr): batch of padded character id sequence tensor (B, Lmax) ys_lens (Tensor): batch of lengths of character sequence (B) Returns: loss (Tenosr): ctc loss value, scalar. """ logits = self.ctc_lo(self.dropout(hs_pad)) loss = self.criterion(logits, ys_pad, hlens, ys_lens) return loss def softmax(self, eouts: paddle.Tensor, temperature: float=1.0): """Get CTC probabilities. Args: eouts (FloatTensor): `[B, T, enc_units]` Returns: probs (FloatTensor): `[B, T, odim]` """ self.probs = F.softmax(self.ctc_lo(eouts) / temperature, axis=2) return self.probs def log_softmax(self, hs_pad: paddle.Tensor, temperature: float=1.0) -> paddle.Tensor: """log_softmax of frame activations Args: Tensor hs_pad: 3d tensor (B, Tmax, eprojs) Returns: paddle.Tensor: log softmax applied 3d tensor (B, Tmax, odim) """ return F.log_softmax(self.ctc_lo(hs_pad) / temperature, axis=2) def argmax(self, hs_pad: paddle.Tensor) -> paddle.Tensor: """argmax of frame activations Args: paddle.Tensor hs_pad: 3d tensor (B, Tmax, eprojs) Returns: paddle.Tensor: argmax applied 2d tensor (B, Tmax) """ return paddle.argmax(self.ctc_lo(hs_pad), dim=2) def forced_align(self, ctc_probs: paddle.Tensor, y: paddle.Tensor, blank_id=0) -> list: """ctc forced alignment. Args: ctc_probs (paddle.Tensor): hidden state sequence, 2d tensor (T, D) y (paddle.Tensor): label id sequence tensor, 1d tensor (L) blank_id (int): blank symbol index Returns: paddle.Tensor: best alignment result, (T). """ return ctc_utils.forced_align(ctc_probs, y, blank_id) class CTCDecoder(CTCDecoderBase): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # CTCDecoder LM Score handle self._ext_scorer = None def _decode_batch_greedy(self, probs_split, vocab_list): """Decode by best path for a batch of probs matrix input. :param probs_split: List of 2-D probability matrix, and each consists of prob vectors for one speech utterancce. :param probs_split: List of matrix :param vocab_list: List of tokens in the vocabulary, for decoding. :type vocab_list: list :return: List of transcription texts. :rtype: List of str """ results = [] for i, probs in enumerate(probs_split): output_transcription = ctc_greedy_decoder( probs_seq=probs, vocabulary=vocab_list, blank_id=self.blank_id) results.append(output_transcription) return results def _init_ext_scorer(self, beam_alpha, beam_beta, language_model_path, vocab_list): """Initialize the external scorer. :param beam_alpha: Parameter associated with language model. :type beam_alpha: float :param beam_beta: Parameter associated with word count. :type beam_beta: float :param language_model_path: Filepath for language model. If it is empty, the external scorer will be set to None, and the decoding method will be pure beam search without scorer. :type language_model_path: str|None :param vocab_list: List of tokens in the vocabulary, for decoding. :type vocab_list: list """ # init once if self._ext_scorer is not None: return if language_model_path != '': logger.info("begin to initialize the external scorer " "for decoding") self._ext_scorer = Scorer(beam_alpha, beam_beta, language_model_path, vocab_list) lm_char_based = self._ext_scorer.is_character_based() lm_max_order = self._ext_scorer.get_max_order() lm_dict_size = self._ext_scorer.get_dict_size() logger.info("language model: " "is_character_based = %d," % lm_char_based + " max_order = %d," % lm_max_order + " dict_size = %d" % lm_dict_size) logger.info("end initializing scorer") else: self._ext_scorer = None logger.info("no language model provided, " "decoding by pure beam search without scorer.") def _decode_batch_beam_search(self, probs_split, beam_alpha, beam_beta, beam_size, cutoff_prob, cutoff_top_n, vocab_list, num_processes): """Decode by beam search for a batch of probs matrix input. :param probs_split: List of 2-D probability matrix, and each consists of prob vectors for one speech utterancce. :param probs_split: List of matrix :param beam_alpha: Parameter associated with language model. :type beam_alpha: float :param beam_beta: Parameter associated with word count. :type beam_beta: float :param beam_size: Width for Beam search. :type beam_size: int :param cutoff_prob: Cutoff probability in pruning, default 1.0, no pruning. :type cutoff_prob: float :param cutoff_top_n: Cutoff number in pruning, only top cutoff_top_n characters with highest probs in vocabulary will be used in beam search, default 40. :type cutoff_top_n: int :param vocab_list: List of tokens in the vocabulary, for decoding. :type vocab_list: list :param num_processes: Number of processes (CPU) for decoder. :type num_processes: int :return: List of transcription texts. :rtype: List of str """ if self._ext_scorer is not None: self._ext_scorer.reset_params(beam_alpha, beam_beta) # beam search decode num_processes = min(num_processes, len(probs_split)) beam_search_results = ctc_beam_search_decoder_batch( probs_split=probs_split, vocabulary=vocab_list, beam_size=beam_size, num_processes=num_processes, ext_scoring_func=self._ext_scorer, cutoff_prob=cutoff_prob, cutoff_top_n=cutoff_top_n, blank_id=self.blank_id) results = [result[0][1] for result in beam_search_results] return results def init_decode(self, beam_alpha, beam_beta, lang_model_path, vocab_list, decoding_method): if decoding_method == "ctc_beam_search": self._init_ext_scorer(beam_alpha, beam_beta, lang_model_path, vocab_list) def decode_probs(self, probs, logits_lens, vocab_list, decoding_method, lang_model_path, beam_alpha, beam_beta, beam_size, cutoff_prob, cutoff_top_n, num_processes): """ctc decoding with probs. Args: probs (Tenosr): activation after softmax logits_lens (Tenosr): audio output lens vocab_list ([type]): [description] decoding_method ([type]): [description] lang_model_path ([type]): [description] beam_alpha ([type]): [description] beam_beta ([type]): [description] beam_size ([type]): [description] cutoff_prob ([type]): [description] cutoff_top_n ([type]): [description] num_processes ([type]): [description] Raises: ValueError: when decoding_method not support. Returns: List[str]: transcripts. """ probs_split = [probs[i, :l, :] for i, l in enumerate(logits_lens)] if decoding_method == "ctc_greedy": result_transcripts = self._decode_batch_greedy( probs_split=probs_split, vocab_list=vocab_list) elif decoding_method == "ctc_beam_search": result_transcripts = self._decode_batch_beam_search( probs_split=probs_split, beam_alpha=beam_alpha, beam_beta=beam_beta, beam_size=beam_size, cutoff_prob=cutoff_prob, cutoff_top_n=cutoff_top_n, vocab_list=vocab_list, num_processes=num_processes) else: raise ValueError(f"Not support: {decoding_method}") return result_transcripts