#!/bin/bash if [ $# != 2 ];then echo "usage: CUDA_VISIBLE_DEVICES=0 ${0} config_path ckpt_name" exit -1 fi ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}') echo "using $ngpu gpus..." config_path=$1 ckpt_name=$2 mkdir -p exp # seed may break model convergence seed=0 if [ ${seed} != 0 ]; then export FLAGS_cudnn_deterministic=True fi # default memeory allocator strategy may case gpu training hang # for no OOM raised when memory exhaused export FLAGS_allocator_strategy=naive_best_fit if [ ${ngpu} == 0 ]; then python3 -u ${BIN_DIR}/train.py \ --ngpu ${ngpu} \ --config ${config_path} \ --output exp/${ckpt_name} \ --seed ${seed} else python3 -m paddle.distributed.launch --gpus=${CUDA_VISIBLE_DEVICES} ${BIN_DIR}/train.py \ --ngpu ${ngpu} \ --config ${config_path} \ --output exp/${ckpt_name} \ --seed ${seed} fi if [ ${seed} != 0 ]; then unset FLAGS_cudnn_deterministic fi if [ $? -ne 0 ]; then echo "Failed in training!" exit 1 fi exit 0