#! /usr/bin/env bash pushd ../.. > /dev/null # download language model pushd models/lm > /dev/null sh download_lm_en.sh if [ $? -ne 0 ]; then exit 1 fi popd > /dev/null # download well-trained model pushd models/librispeech > /dev/null sh download_model.sh if [ $? -ne 0 ]; then exit 1 fi popd > /dev/null # infer CUDA_VISIBLE_DEVICES=0 \ python -u infer.py \ --num_samples=10 \ --trainer_count=1 \ --beam_size=500 \ --num_proc_bsearch=8 \ --num_conv_layers=2 \ --num_rnn_layers=3 \ --rnn_layer_size=2048 \ --alpha=2.15 \ --beta=0.35 \ --cutoff_prob=1.0 \ --cutoff_top_n=40 \ --use_gru=False \ --use_gpu=True \ --share_rnn_weights=True \ --infer_manifest='data/librispeech/manifest.test-clean' \ --mean_std_path='models/librispeech/mean_std.npz' \ --vocab_path='models/librispeech/vocab.txt' \ --model_path='models/librispeech/params.tar.gz' \ --lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm' \ --decoding_method='ctc_beam_search' \ --error_rate_type='wer' \ --specgram_type='linear' if [ $? -ne 0 ]; then echo "Failed in inference!" exit 1 fi exit 0