#! /usr/bin/env bash TRAIN_MANIFEST=$1 DEV_MANIFEST=$2 MODEL_PATH=$3 NUM_GPU=$4 BATCH_SIZE=$5 IS_LOCAL=$6 python ./cloud/split_data.py \ --in_manifest_path=${TRAIN_MANIFEST} \ --out_manifest_path='/local.manifest.train' python ./cloud/split_data.py \ --in_manifest_path=${DEV_MANIFEST} \ --out_manifest_path='/local.manifest.dev' python -u train.py \ --batch_size=${BATCH_SIZE} \ --trainer_count=${NUM_GPU} \ --num_passes=200 \ --num_proc_data=${NUM_GPU} \ --num_conv_layers=2 \ --num_rnn_layers=3 \ --rnn_layer_size=2048 \ --num_iter_print=100 \ --learning_rate=5e-4 \ --max_duration=27.0 \ --min_duration=0.0 \ --use_sortagrad=True \ --use_gru=False \ --use_gpu=True \ --is_local=${IS_LOCAL} \ --share_rnn_weights=True \ --train_manifest='/local.manifest.train' \ --dev_manifest='/local.manifest.dev' \ --mean_std_path='data/librispeech/mean_std.npz' \ --vocab_path='data/librispeech/eng_vocab.txt' \ --output_model_dir='./checkpoints' \ --output_model_dir=${MODEL_PATH} \ --augment_conf_path='conf/augmentation.config' \ --specgram_type='linear' \ --shuffle_method='batch_shuffle_clipped' \ 2>&1 | tee ./log/train.log