# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy import numpy as np import paddle def waveform_collate_fn(batch): waveforms = np.stack([item['feat'] for item in batch]) labels = np.stack([item['label'] for item in batch]) return {'waveforms': waveforms, 'labels': labels} def feature_normalize(feats: paddle.Tensor, mean_norm: bool=True, std_norm: bool=True, convert_to_numpy: bool=False): # Features normalization if needed # numpy.mean is a little with paddle.mean about 1e-6 if convert_to_numpy: feats_np = feats.numpy() mean = feats_np.mean(axis=-1, keepdims=True) if mean_norm else 0 std = feats_np.std(axis=-1, keepdims=True) if std_norm else 1 feats_np = (feats_np - mean) / std feats = paddle.to_tensor(feats_np, dtype=feats.dtype) else: mean = feats.mean(axis=-1, keepdim=True) if mean_norm else 0 std = feats.std(axis=-1, keepdim=True) if std_norm else 1 feats = (feats - mean) / std return feats def pad_right_2d(x, target_length, axis=-1, mode='constant', **kwargs): x = np.asarray(x) assert len( x.shape) == 2, f'Only 2D arrays supported, but got shape: {x.shape}' w = target_length - x.shape[axis] assert w >= 0, f'Target length {target_length} is less than origin length {x.shape[axis]}' if axis == 0: pad_width = [[0, w], [0, 0]] else: pad_width = [[0, 0], [0, w]] return np.pad(x, pad_width, mode=mode, **kwargs) def batch_feature_normalize(batch, mean_norm: bool=True, std_norm: bool=True): ids = [item['id'] for item in batch] lengths = np.asarray([item['feat'].shape[1] for item in batch]) feats = list( map(lambda x: pad_right_2d(x, lengths.max()), [item['feat'] for item in batch])) feats = np.stack(feats) # Features normalization if needed for i in range(len(feats)): feat = feats[i][:, :lengths[i]] # Excluding pad values. mean = feat.mean(axis=-1, keepdims=True) if mean_norm else 0 std = feat.std(axis=-1, keepdims=True) if std_norm else 1 feats[i][:, :lengths[i]] = (feat - mean) / std assert feats[i][:, lengths[ i]:].sum() == 0 # Padding valus should all be 0. # Converts into ratios. # the utterance of the max length doesn't need to padding # the remaining utterances need to padding and all of them will be padded to max length # we convert the original length of each utterance to the ratio of the max length lengths = (lengths / lengths.max()).astype(np.float32) return {'ids': ids, 'feats': feats, 'lengths': lengths} def pad_right_to(array, target_shape, mode="constant", value=0): """ This function takes a numpy array of arbitrary shape and pads it to target shape by appending values on the right. Args: array: input numpy array. Input array whose dimension we need to pad. target_shape : (list, tuple). Target shape we want for the target array its len must be equal to array.ndim mode : str. Pad mode, please refer to numpy.pad documentation. value : float. Pad value, please refer to numpy.pad documentation. Returns: array: numpy.array. Padded array. valid_vals : list. List containing proportion for each dimension of original, non-padded values. """ assert len(target_shape) == array.ndim pads = [] # this contains the abs length of the padding for each dimension. valid_vals = [] # this contains the relative lengths for each dimension. i = 0 # iterating over target_shape ndims while i < len(target_shape): assert (target_shape[i] >= array.shape[i] ), "Target shape must be >= original shape for every dim" pads.append([0, target_shape[i] - array.shape[i]]) valid_vals.append(array.shape[i] / target_shape[i]) i += 1 array = numpy.pad(array, pads, mode=mode, constant_values=value) return array, valid_vals def batch_pad_right(arrays, mode="constant", value=0): """Given a list of numpy arrays it batches them together by padding to the right on each dimension in order to get same length for all. Args: arrays : list. List of array we wish to pad together. mode : str. Padding mode see numpy.pad documentation. value : float. Padding value see numpy.pad documentation. Returns: array : numpy.array. Padded array. valid_vals : list. List containing proportion for each dimension of original, non-padded values. """ if not len(arrays): raise IndexError("arrays list must not be empty") if len(arrays) == 1: # if there is only one array in the batch we simply unsqueeze it. return numpy.expand_dims(arrays[0], axis=0), numpy.array([1.0]) if not (any( [arrays[i].ndim == arrays[0].ndim for i in range(1, len(arrays))])): raise IndexError("All arrays must have same number of dimensions") # FIXME we limit the support here: we allow padding of only the last dimension # need to remove this when feat extraction is updated to handle multichannel. max_shape = [] for dim in range(arrays[0].ndim): if dim != (arrays[0].ndim - 1): if not all( [x.shape[dim] == arrays[0].shape[dim] for x in arrays[1:]]): raise EnvironmentError( "arrays should have same dimensions except for last one") max_shape.append(max([x.shape[dim] for x in arrays])) batched = [] valid = [] for t in arrays: # for each array we apply pad_right_to padded, valid_percent = pad_right_to( t, max_shape, mode=mode, value=value) batched.append(padded) valid.append(valid_percent[-1]) batched = numpy.stack(batched) return batched, numpy.array(valid)