# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # Copyright 2019 Mobvoi Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Modified from wenet(https://github.com/wenet-e2e/wenet) """Decoder self-attention layer definition.""" from typing import Optional from typing import Tuple import paddle from paddle import nn from paddlespeech.s2t.modules.align import LayerNorm from paddlespeech.s2t.modules.align import Linear from paddlespeech.s2t.utils.log import Log logger = Log(__name__).getlog() __all__ = ["DecoderLayer"] class DecoderLayer(nn.Layer): """Single decoder layer module. Args: size (int): Input dimension. self_attn (nn.Layer): Self-attention module instance. `MultiHeadedAttention` instance can be used as the argument. src_attn (nn.Layer): Self-attention module instance. `MultiHeadedAttention` instance can be used as the argument. feed_forward (nn.Layer): Feed-forward module instance. `PositionwiseFeedForward` instance can be used as the argument. dropout_rate (float): Dropout rate. normalize_before (bool): True: use layer_norm before each sub-block. False: to use layer_norm after each sub-block. concat_after (bool): Whether to concat attention layer's input and output. True: x -> x + linear(concat(x, att(x))) False: x -> x + att(x) """ def __init__( self, size: int, self_attn: nn.Layer, src_attn: nn.Layer, feed_forward: nn.Layer, dropout_rate: float, normalize_before: bool=True, concat_after: bool=False, ): """Construct an DecoderLayer object.""" super().__init__() self.size = size self.self_attn = self_attn self.src_attn = src_attn self.feed_forward = feed_forward self.norm1 = LayerNorm(size, epsilon=1e-12) self.norm2 = LayerNorm(size, epsilon=1e-12) self.norm3 = LayerNorm(size, epsilon=1e-12) self.dropout = nn.Dropout(dropout_rate) self.normalize_before = normalize_before self.concat_after = concat_after self.concat_linear1 = Linear(size + size, size) self.concat_linear2 = Linear(size + size, size) def forward( self, tgt: paddle.Tensor, tgt_mask: paddle.Tensor, memory: paddle.Tensor, memory_mask: paddle.Tensor, cache: Optional[paddle.Tensor]=None ) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor]: """Compute decoded features. Args: tgt (paddle.Tensor): Input tensor (#batch, maxlen_out, size). tgt_mask (paddle.Tensor): Mask for input tensor (#batch, maxlen_out). memory (paddle.Tensor): Encoded memory (#batch, maxlen_in, size). memory_mask (paddle.Tensor): Encoded memory mask (#batch, maxlen_in). cache (paddle.Tensor): cached tensors. (#batch, maxlen_out - 1, size). Returns: paddle.Tensor: Output tensor (#batch, maxlen_out, size). paddle.Tensor: Mask for output tensor (#batch, maxlen_out). paddle.Tensor: Encoded memory (#batch, maxlen_in, size). paddle.Tensor: Encoded memory mask (#batch, maxlen_in). """ residual = tgt if self.normalize_before: tgt = self.norm1(tgt) if cache is None: tgt_q = tgt tgt_q_mask = tgt_mask else: # compute only the last frame query keeping dim: max_time_out -> 1 assert cache.shape == [ tgt.shape[0], tgt.shape[1] - 1, self.size, ], f"{cache.shape} == {[tgt.shape[0], tgt.shape[1] - 1, self.size]}" tgt_q = tgt[:, -1:, :] residual = residual[:, -1:, :] # TODO(Hui Zhang): slice not support bool type # tgt_q_mask = tgt_mask[:, -1:, :] tgt_q_mask = tgt_mask.cast(paddle.int64)[:, -1:, :].cast( paddle.bool) if self.concat_after: tgt_concat = paddle.cat( (tgt_q, self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)[0]), dim=-1) x = residual + self.concat_linear1(tgt_concat) else: x = residual + self.dropout( self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)[0]) if not self.normalize_before: x = self.norm1(x) residual = x if self.normalize_before: x = self.norm2(x) if self.concat_after: x_concat = paddle.cat( (x, self.src_attn(x, memory, memory, memory_mask)[0]), dim=-1) x = residual + self.concat_linear2(x_concat) else: x = residual + self.dropout( self.src_attn(x, memory, memory, memory_mask)[0]) if not self.normalize_before: x = self.norm2(x) residual = x if self.normalize_before: x = self.norm3(x) x = residual + self.dropout(self.feed_forward(x)) if not self.normalize_before: x = self.norm3(x) if cache is not None: x = paddle.cat([cache, x], dim=1) return x, tgt_mask, memory, memory_mask