# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import time from collections import OrderedDict from typing import Any from typing import List from typing import Optional from typing import Union import numpy as np import paddle import soundfile as sf import yaml from yacs.config import CfgNode from ..executor import BaseExecutor from ..log import logger from ..utils import stats_wrapper from paddlespeech.resource import CommonTaskResource from paddlespeech.t2s.exps.syn_utils import get_am_inference from paddlespeech.t2s.exps.syn_utils import get_frontend from paddlespeech.t2s.exps.syn_utils import get_sess from paddlespeech.t2s.exps.syn_utils import get_voc_inference from paddlespeech.t2s.exps.syn_utils import run_frontend from paddlespeech.t2s.utils import str2bool __all__ = ['TTSExecutor'] ONNX_SUPPORT_SET = { 'speedyspeech_csmsc', 'fastspeech2_csmsc', 'fastspeech2_ljspeech', 'fastspeech2_aishell3', 'fastspeech2_vctk', 'pwgan_csmsc', 'pwgan_ljspeech', 'pwgan_aishell3', 'pwgan_vctk', 'mb_melgan_csmsc', 'hifigan_csmsc', 'hifigan_ljspeech', 'hifigan_aishell3', 'hifigan_vctk' } class TTSExecutor(BaseExecutor): def __init__(self): super().__init__('tts') self.parser = argparse.ArgumentParser( prog='paddlespeech.tts', add_help=True) self.parser.add_argument( '--input', type=str, default=None, help='Input text to generate.') # acoustic model self.parser.add_argument( '--am', type=str, default='fastspeech2_csmsc', choices=[ 'speedyspeech_csmsc', 'fastspeech2_csmsc', 'fastspeech2_ljspeech', 'fastspeech2_aishell3', 'fastspeech2_vctk', 'fastspeech2_mix', 'tacotron2_csmsc', 'tacotron2_ljspeech', 'fastspeech2_male', ], help='Choose acoustic model type of tts task.') self.parser.add_argument( '--am_config', type=str, default=None, help='Config of acoustic model. Use deault config when it is None.') self.parser.add_argument( '--am_ckpt', type=str, default=None, help='Checkpoint file of acoustic model.') self.parser.add_argument( "--am_stat", type=str, default=None, help="mean and standard deviation used to normalize spectrogram when training acoustic model." ) self.parser.add_argument( "--phones_dict", type=str, default=None, help="phone vocabulary file.") self.parser.add_argument( "--tones_dict", type=str, default=None, help="tone vocabulary file.") self.parser.add_argument( "--speaker_dict", type=str, default=None, help="speaker id map file.") self.parser.add_argument( '--spk_id', type=int, default=0, help='spk id for multi speaker acoustic model') # vocoder self.parser.add_argument( '--voc', type=str, default='hifigan_csmsc', choices=[ 'pwgan_csmsc', 'pwgan_ljspeech', 'pwgan_aishell3', 'pwgan_vctk', 'mb_melgan_csmsc', 'style_melgan_csmsc', 'hifigan_csmsc', 'hifigan_ljspeech', 'hifigan_aishell3', 'hifigan_vctk', 'wavernn_csmsc', 'pwgan_male', ], help='Choose vocoder type of tts task.') self.parser.add_argument( '--voc_config', type=str, default=None, help='Config of voc. Use deault config when it is None.') self.parser.add_argument( '--voc_ckpt', type=str, default=None, help='Checkpoint file of voc.') self.parser.add_argument( "--voc_stat", type=str, default=None, help="mean and standard deviation used to normalize spectrogram when training voc." ) # other self.parser.add_argument( '--lang', type=str, default='zh', help='Choose model language. zh or en or mix') self.parser.add_argument( '--device', type=str, default=paddle.get_device(), help='Choose device to execute model inference.') self.parser.add_argument('--cpu_threads', type=int, default=2) self.parser.add_argument( '--output', type=str, default='output.wav', help='output file name') self.parser.add_argument( '-d', '--job_dump_result', action='store_true', help='Save job result into file.') self.parser.add_argument( '-v', '--verbose', action='store_true', help='Increase logger verbosity of current task.') self.parser.add_argument( "--use_onnx", type=str2bool, default=False, help="whether to usen onnxruntime inference.") self.parser.add_argument( '--fs', type=int, default=24000, help='sample rate for onnx models when use specified model files.') def _init_from_path( self, am: str='fastspeech2_csmsc', am_config: Optional[os.PathLike]=None, am_ckpt: Optional[os.PathLike]=None, am_stat: Optional[os.PathLike]=None, phones_dict: Optional[os.PathLike]=None, tones_dict: Optional[os.PathLike]=None, speaker_dict: Optional[os.PathLike]=None, voc: str='hifigan_csmsc', voc_config: Optional[os.PathLike]=None, voc_ckpt: Optional[os.PathLike]=None, voc_stat: Optional[os.PathLike]=None, lang: str='zh', ): """ Init model and other resources from a specific path. """ if hasattr(self, 'am_inference') and hasattr(self, 'voc_inference'): logger.debug('Models had been initialized.') return # am if am_ckpt is None or am_config is None or am_stat is None or phones_dict is None: use_pretrained_am = True else: use_pretrained_am = False am_tag = am + '-' + lang self.task_resource.set_task_model( model_tag=am_tag, model_type=0, # am skip_download=not use_pretrained_am, version=None, # default version ) if use_pretrained_am: self.am_res_path = self.task_resource.res_dir self.am_config = os.path.join(self.am_res_path, self.task_resource.res_dict['config']) self.am_ckpt = os.path.join(self.am_res_path, self.task_resource.res_dict['ckpt']) self.am_stat = os.path.join( self.am_res_path, self.task_resource.res_dict['speech_stats']) # must have phones_dict in acoustic self.phones_dict = os.path.join( self.am_res_path, self.task_resource.res_dict['phones_dict']) logger.debug(self.am_res_path) logger.debug(self.am_config) logger.debug(self.am_ckpt) else: self.am_config = os.path.abspath(am_config) self.am_ckpt = os.path.abspath(am_ckpt) self.am_stat = os.path.abspath(am_stat) self.phones_dict = os.path.abspath(phones_dict) self.am_res_path = os.path.dirname(self.am_config) # for speedyspeech self.tones_dict = None if 'tones_dict' in self.task_resource.res_dict: self.tones_dict = os.path.join( self.am_res_path, self.task_resource.res_dict['tones_dict']) if tones_dict: self.tones_dict = tones_dict # for multi speaker fastspeech2 self.speaker_dict = None if 'speaker_dict' in self.task_resource.res_dict: self.speaker_dict = os.path.join( self.am_res_path, self.task_resource.res_dict['speaker_dict']) if speaker_dict: self.speaker_dict = speaker_dict # voc if voc_ckpt is None or voc_config is None or voc_stat is None: use_pretrained_voc = True else: use_pretrained_voc = False voc_lang = lang # When speaker is 174 (csmsc), use csmsc's vocoder is better than aishell3's if lang == 'mix': voc_lang = 'zh' voc_tag = voc + '-' + voc_lang self.task_resource.set_task_model( model_tag=voc_tag, model_type=1, # vocoder skip_download=not use_pretrained_voc, version=None, # default version ) if use_pretrained_voc: self.voc_res_path = self.task_resource.voc_res_dir self.voc_config = os.path.join( self.voc_res_path, self.task_resource.voc_res_dict['config']) self.voc_ckpt = os.path.join( self.voc_res_path, self.task_resource.voc_res_dict['ckpt']) self.voc_stat = os.path.join( self.voc_res_path, self.task_resource.voc_res_dict['speech_stats']) logger.debug(self.voc_res_path) logger.debug(self.voc_config) logger.debug(self.voc_ckpt) else: self.voc_config = os.path.abspath(voc_config) self.voc_ckpt = os.path.abspath(voc_ckpt) self.voc_stat = os.path.abspath(voc_stat) self.voc_res_path = os.path.dirname( os.path.abspath(self.voc_config)) # Init body. with open(self.am_config) as f: self.am_config = CfgNode(yaml.safe_load(f)) with open(self.voc_config) as f: self.voc_config = CfgNode(yaml.safe_load(f)) with open(self.phones_dict, "r") as f: phn_id = [line.strip().split() for line in f.readlines()] vocab_size = len(phn_id) tone_size = None if self.tones_dict: with open(self.tones_dict, "r") as f: tone_id = [line.strip().split() for line in f.readlines()] tone_size = len(tone_id) spk_num = None if self.speaker_dict: with open(self.speaker_dict, 'rt') as f: spk_id = [line.strip().split() for line in f.readlines()] spk_num = len(spk_id) # frontend self.frontend = get_frontend( lang=lang, phones_dict=self.phones_dict, tones_dict=self.tones_dict) # acoustic model self.am_inference = get_am_inference( am=am, am_config=self.am_config, am_ckpt=self.am_ckpt, am_stat=self.am_stat, phones_dict=self.phones_dict, tones_dict=self.tones_dict, speaker_dict=self.speaker_dict) # vocoder self.voc_inference = get_voc_inference( voc=voc, voc_config=self.voc_config, voc_ckpt=self.voc_ckpt, voc_stat=self.voc_stat) def _init_from_path_onnx(self, am: str='fastspeech2_csmsc', am_ckpt: Optional[os.PathLike]=None, phones_dict: Optional[os.PathLike]=None, tones_dict: Optional[os.PathLike]=None, speaker_dict: Optional[os.PathLike]=None, voc: str='hifigan_csmsc', voc_ckpt: Optional[os.PathLike]=None, lang: str='zh', device: str='cpu', cpu_threads: int=2, fs: int=24000): if hasattr(self, 'am_sess') and hasattr(self, 'voc_sess'): logger.debug('Models had been initialized.') return # am if am_ckpt is None or phones_dict is None: use_pretrained_am = True else: use_pretrained_am = False am_tag = am + '_onnx' + '-' + lang self.task_resource.set_task_model( model_tag=am_tag, model_type=0, # am skip_download=not use_pretrained_am, version=None, # default version ) if use_pretrained_am: self.am_res_path = self.task_resource.res_dir self.am_ckpt = os.path.join(self.am_res_path, self.task_resource.res_dict['ckpt']) # must have phones_dict in acoustic self.phones_dict = os.path.join( self.am_res_path, self.task_resource.res_dict['phones_dict']) self.am_fs = self.task_resource.res_dict['sample_rate'] logger.debug(self.am_res_path) logger.debug(self.am_ckpt) else: self.am_ckpt = os.path.abspath(am_ckpt) self.phones_dict = os.path.abspath(phones_dict) self.am_res_path = os.path.dirname(self.am_ckpt) self.am_fs = fs # for speedyspeech self.tones_dict = None if 'tones_dict' in self.task_resource.res_dict: self.tones_dict = os.path.join( self.am_res_path, self.task_resource.res_dict['tones_dict']) if tones_dict: self.tones_dict = tones_dict # voc if voc_ckpt is None: use_pretrained_voc = True else: use_pretrained_voc = False voc_lang = lang # we must use ljspeech's voc for mix am now! if lang == 'mix': voc_lang = 'en' voc_tag = voc + '_onnx' + '-' + voc_lang self.task_resource.set_task_model( model_tag=voc_tag, model_type=1, # vocoder skip_download=not use_pretrained_voc, version=None, # default version ) if use_pretrained_voc: self.voc_res_path = self.task_resource.voc_res_dir self.voc_ckpt = os.path.join( self.voc_res_path, self.task_resource.voc_res_dict['ckpt']) logger.debug(self.voc_res_path) logger.debug(self.voc_ckpt) else: self.voc_ckpt = os.path.abspath(voc_ckpt) self.voc_res_path = os.path.dirname(os.path.abspath(self.voc_ckpt)) # frontend self.frontend = get_frontend( lang=lang, phones_dict=self.phones_dict, tones_dict=self.tones_dict) self.am_sess = get_sess( model_path=self.am_ckpt, device=device, cpu_threads=cpu_threads) # vocoder self.voc_sess = get_sess( model_path=self.voc_ckpt, device=device, cpu_threads=cpu_threads) def preprocess(self, input: Any, *args, **kwargs): """ Input preprocess and return paddle.Tensor stored in self._inputs. Input content can be a text(tts), a file(asr, cls), a stream(not supported yet) or anything needed. Args: input (Any): Input text/file/stream or other content. """ pass @paddle.no_grad() def infer(self, text: str, lang: str='zh', am: str='fastspeech2_csmsc', spk_id: int=0): """ Model inference and result stored in self.output. """ am_name = am[:am.rindex('_')] am_dataset = am[am.rindex('_') + 1:] merge_sentences = False get_tone_ids = False if am_name == 'speedyspeech': get_tone_ids = True frontend_st = time.time() frontend_dict = run_frontend( frontend=self.frontend, text=text, merge_sentences=merge_sentences, get_tone_ids=get_tone_ids, lang=lang) self.frontend_time = time.time() - frontend_st self.am_time = 0 self.voc_time = 0 flags = 0 phone_ids = frontend_dict['phone_ids'] for i in range(len(phone_ids)): am_st = time.time() part_phone_ids = phone_ids[i] # am if am_name == 'speedyspeech': part_tone_ids = frontend_dict['tone_ids'][i] mel = self.am_inference(part_phone_ids, part_tone_ids) # fastspeech2 else: # multi speaker if am_dataset in {'aishell3', 'vctk', 'mix'}: mel = self.am_inference( part_phone_ids, spk_id=paddle.to_tensor(spk_id)) else: mel = self.am_inference(part_phone_ids) self.am_time += (time.time() - am_st) # voc voc_st = time.time() wav = self.voc_inference(mel) if flags == 0: wav_all = wav flags = 1 else: wav_all = paddle.concat([wav_all, wav]) self.voc_time += (time.time() - voc_st) self._outputs['wav'] = wav_all def infer_onnx(self, text: str, lang: str='zh', am: str='fastspeech2_csmsc', spk_id: int=0): am_name = am[:am.rindex('_')] am_dataset = am[am.rindex('_') + 1:] merge_sentences = False get_tone_ids = False if am_name == 'speedyspeech': get_tone_ids = True am_input_feed = {} frontend_st = time.time() frontend_dict = run_frontend( frontend=self.frontend, text=text, merge_sentences=merge_sentences, get_tone_ids=get_tone_ids, lang=lang, to_tensor=False) self.frontend_time = time.time() - frontend_st phone_ids = frontend_dict['phone_ids'] self.am_time = 0 self.voc_time = 0 flags = 0 for i in range(len(phone_ids)): am_st = time.time() part_phone_ids = phone_ids[i] if am_name == 'fastspeech2': am_input_feed.update({'text': part_phone_ids}) if am_dataset in {"aishell3", "vctk"}: # NOTE: 'spk_id' should be List[int] rather than int here!! am_input_feed.update({'spk_id': [spk_id]}) elif am_name == 'speedyspeech': part_tone_ids = frontend_dict['tone_ids'][i] am_input_feed.update({ 'phones': part_phone_ids, 'tones': part_tone_ids }) mel = self.am_sess.run(output_names=None, input_feed=am_input_feed) mel = mel[0] self.am_time += (time.time() - am_st) # voc voc_st = time.time() wav = self.voc_sess.run( output_names=None, input_feed={'logmel': mel}) wav = wav[0] if flags == 0: wav_all = wav flags = 1 else: wav_all = np.concatenate([wav_all, wav]) self.voc_time += (time.time() - voc_st) self._outputs['wav'] = wav_all def postprocess(self, output: str='output.wav') -> Union[str, os.PathLike]: """ Output postprocess and return results. This method get model output from self._outputs and convert it into human-readable results. Returns: Union[str, os.PathLike]: Human-readable results such as texts and audio files. """ output = os.path.abspath(os.path.expanduser(output)) sf.write( output, self._outputs['wav'].numpy(), samplerate=self.am_config.fs) return output def postprocess_onnx(self, output: str='output.wav') -> Union[str, os.PathLike]: """ Output postprocess and return results. This method get model output from self._outputs and convert it into human-readable results. Returns: Union[str, os.PathLike]: Human-readable results such as texts and audio files. """ output = os.path.abspath(os.path.expanduser(output)) sf.write(output, self._outputs['wav'], samplerate=self.am_fs) return output # 命令行的入口是这里 def execute(self, argv: List[str]) -> bool: """ Command line entry. """ args = self.parser.parse_args(argv) am = args.am am_config = args.am_config am_ckpt = args.am_ckpt am_stat = args.am_stat phones_dict = args.phones_dict tones_dict = args.tones_dict speaker_dict = args.speaker_dict voc = args.voc voc_config = args.voc_config voc_ckpt = args.voc_ckpt voc_stat = args.voc_stat lang = args.lang device = args.device spk_id = args.spk_id use_onnx = args.use_onnx cpu_threads = args.cpu_threads fs = args.fs if not args.verbose: self.disable_task_loggers() task_source = self.get_input_source(args.input) task_results = OrderedDict() has_exceptions = False for id_, input_ in task_source.items(): if len(task_source) > 1: assert isinstance(args.output, str) and args.output.endswith('.wav') output = args.output.replace('.wav', f'_{id_}.wav') else: output = args.output try: res = self( text=input_, # acoustic model related am=am, am_config=am_config, am_ckpt=am_ckpt, am_stat=am_stat, phones_dict=phones_dict, tones_dict=tones_dict, speaker_dict=speaker_dict, spk_id=spk_id, # vocoder related voc=voc, voc_config=voc_config, voc_ckpt=voc_ckpt, voc_stat=voc_stat, # other lang=lang, device=device, output=output, use_onnx=use_onnx, cpu_threads=cpu_threads, fs=fs) task_results[id_] = res except Exception as e: has_exceptions = True task_results[id_] = f'{e.__class__.__name__}: {e}' self.process_task_results(args.input, task_results, args.job_dump_result) if has_exceptions: return False else: return True # pyton api 的入口是这里 @stats_wrapper def __call__(self, text: str, am: str='fastspeech2_csmsc', am_config: Optional[os.PathLike]=None, am_ckpt: Optional[os.PathLike]=None, am_stat: Optional[os.PathLike]=None, spk_id: int=0, phones_dict: Optional[os.PathLike]=None, tones_dict: Optional[os.PathLike]=None, speaker_dict: Optional[os.PathLike]=None, voc: str='hifigan_csmsc', voc_config: Optional[os.PathLike]=None, voc_ckpt: Optional[os.PathLike]=None, voc_stat: Optional[os.PathLike]=None, lang: str='zh', device: str=paddle.get_device(), output: str='output.wav', use_onnx: bool=False, cpu_threads: int=2, fs: int=24000): """ Python API to call an executor. """ if not use_onnx: paddle.set_device(device) self._init_from_path( am=am, am_config=am_config, am_ckpt=am_ckpt, am_stat=am_stat, phones_dict=phones_dict, tones_dict=tones_dict, speaker_dict=speaker_dict, voc=voc, voc_config=voc_config, voc_ckpt=voc_ckpt, voc_stat=voc_stat, lang=lang) self.infer(text=text, lang=lang, am=am, spk_id=spk_id) res = self.postprocess(output=output) return res else: # use onnx # we use `cpu` for onnxruntime by default # please see description in https://github.com/PaddlePaddle/PaddleSpeech/pull/2220 self.task_resource = CommonTaskResource( task='tts', model_format='onnx') assert ( am in ONNX_SUPPORT_SET and voc in ONNX_SUPPORT_SET ), f'the am and voc you choose, they should be in {ONNX_SUPPORT_SET}' self._init_from_path_onnx( am=am, am_ckpt=am_ckpt, phones_dict=phones_dict, tones_dict=tones_dict, speaker_dict=speaker_dict, voc=voc, voc_ckpt=voc_ckpt, lang=lang, device=device, cpu_threads=cpu_threads, fs=fs) self.infer_onnx(text=text, lang=lang, am=am, spk_id=spk_id) res = self.postprocess_onnx(output=output) return res