# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains data helper functions.""" import json import math import tarfile from collections import namedtuple from typing import List from typing import Optional from typing import Text import jsonlines import numpy as np from paddlespeech.s2t.utils.log import Log logger = Log(__name__).getlog() __all__ = [ "load_dict", "load_cmvn", "read_manifest", "rms_to_db", "rms_to_dbfs", "max_dbfs", "mean_dbfs", "gain_db_to_ratio", "normalize_audio", "SOS", "EOS", "UNK", "BLANK", "MASKCTC", "SPACE", "convert_samples_to_float32", "convert_samples_from_float32" ] IGNORE_ID = -1 # `sos` and `eos` using same token SOS = "" EOS = SOS UNK = "" BLANK = "" MASKCTC = "" SPACE = "" def load_dict(dict_path: Optional[Text], maskctc=False) -> Optional[List[Text]]: if dict_path is None: return None with open(dict_path, "r") as f: dictionary = f.readlines() # first token is `` # multi line: ` 0\n` # one line: `` # space is relpace with char_list = [entry[:-1].split(" ")[0] for entry in dictionary] if BLANK not in char_list: char_list.insert(0, BLANK) if EOS not in char_list: char_list.append(EOS) # for non-autoregressive maskctc model if maskctc and MASKCTC not in char_list: char_list.append(MASKCTC) return char_list def read_manifest( manifest_path, max_input_len=float('inf'), min_input_len=0.0, max_output_len=float('inf'), min_output_len=0.0, max_output_input_ratio=float('inf'), min_output_input_ratio=0.0, ): """Load and parse manifest file. Args: manifest_path ([type]): Manifest file to load and parse. max_input_len ([type], optional): maximum output seq length, in seconds for raw wav, in frame numbers for feature data. Defaults to float('inf'). min_input_len (float, optional): minimum input seq length, in seconds for raw wav, in frame numbers for feature data. Defaults to 0.0. max_output_len (float, optional): maximum input seq length, in modeling units. Defaults to 500.0. min_output_len (float, optional): minimum input seq length, in modeling units. Defaults to 0.0. max_output_input_ratio (float, optional): maximum output seq length/output seq length ratio. Defaults to 10.0. min_output_input_ratio (float, optional): minimum output seq length/output seq length ratio. Defaults to 0.05. Raises: IOError: If failed to parse the manifest. Returns: List[dict]: Manifest parsing results. """ manifest = [] with jsonlines.open(manifest_path, 'r') as reader: for json_data in reader: feat_len = json_data["input"][0]["shape"][ 0] if "input" in json_data and "shape" in json_data["input"][0] else 1.0 token_len = json_data["output"][0]["shape"][ 0] if "output" in json_data and "shape" in json_data["output"][0] else 1.0 conditions = [ feat_len >= min_input_len, feat_len <= max_input_len, token_len >= min_output_len, token_len <= max_output_len, token_len / feat_len >= min_output_input_ratio, token_len / feat_len <= max_output_input_ratio, ] if all(conditions): manifest.append(json_data) return manifest # Tar File read TarLocalData = namedtuple('TarLocalData', ['tar2info', 'tar2object']) def parse_tar(file): """Parse a tar file to get a tarfile object and a map containing tarinfoes """ result = {} f = tarfile.open(file) for tarinfo in f.getmembers(): result[tarinfo.name] = tarinfo return f, result def subfile_from_tar(file, local_data=None): """Get subfile object from tar. tar:tarpath#filename It will return a subfile object from tar file and cached tar file info for next reading request. """ tarpath, filename = file.split(':', 1)[1].split('#', 1) if local_data is None: local_data = TarLocalData(tar2info={}, tar2object={}) assert isinstance(local_data, TarLocalData) if 'tar2info' not in local_data.__dict__: local_data.tar2info = {} if 'tar2object' not in local_data.__dict__: local_data.tar2object = {} if tarpath not in local_data.tar2info: fobj, infos = parse_tar(tarpath) local_data.tar2info[tarpath] = infos local_data.tar2object[tarpath] = fobj else: fobj = local_data.tar2object[tarpath] infos = local_data.tar2info[tarpath] return fobj.extractfile(infos[filename]) def rms_to_db(rms: float): """Root Mean Square to dB. Args: rms ([float]): root mean square Returns: float: dB """ return 20.0 * math.log10(max(1e-16, rms)) def rms_to_dbfs(rms: float): """Root Mean Square to dBFS. https://fireattack.wordpress.com/2017/02/06/replaygain-loudness-normalization-and-applications/ Audio is mix of sine wave, so 1 amp sine wave's Full scale is 0.7071, equal to -3.0103dB. dB = dBFS + 3.0103 dBFS = db - 3.0103 e.g. 0 dB = -3.0103 dBFS Args: rms ([float]): root mean square Returns: float: dBFS """ return rms_to_db(rms) - 3.0103 def max_dbfs(sample_data: np.ndarray): """Peak dBFS based on the maximum energy sample. Args: sample_data ([np.ndarray]): float array, [-1, 1]. Returns: float: dBFS """ # Peak dBFS based on the maximum energy sample. Will prevent overdrive if used for normalization. return rms_to_dbfs(max(abs(np.min(sample_data)), abs(np.max(sample_data)))) def mean_dbfs(sample_data): """Peak dBFS based on the RMS energy. Args: sample_data ([np.ndarray]): float array, [-1, 1]. Returns: float: dBFS """ return rms_to_dbfs( math.sqrt(np.mean(np.square(sample_data, dtype=np.float64)))) def gain_db_to_ratio(gain_db: float): """dB to ratio Args: gain_db (float): gain in dB Returns: float: scale in amp """ return math.pow(10.0, gain_db / 20.0) def normalize_audio(sample_data: np.ndarray, dbfs: float=-3.0103): """Nomalize audio to dBFS. Args: sample_data (np.ndarray): input wave samples, [-1, 1]. dbfs (float, optional): target dBFS. Defaults to -3.0103. Returns: np.ndarray: normalized wave """ return np.maximum( np.minimum(sample_data * gain_db_to_ratio(dbfs - max_dbfs(sample_data)), 1.0), -1.0) def _load_json_cmvn(json_cmvn_file): """ Load the json format cmvn stats file and calculate cmvn Args: json_cmvn_file: cmvn stats file in json format Returns: a numpy array of [means, vars] """ with open(json_cmvn_file) as f: cmvn_stats = json.load(f) means = cmvn_stats['mean_stat'] variance = cmvn_stats['var_stat'] count = cmvn_stats['frame_num'] for i in range(len(means)): means[i] /= count variance[i] = variance[i] / count - means[i] * means[i] if variance[i] < 1.0e-20: variance[i] = 1.0e-20 variance[i] = 1.0 / math.sqrt(variance[i]) cmvn = np.array([means, variance]) return cmvn def _load_kaldi_cmvn(kaldi_cmvn_file): """ Load the kaldi format cmvn stats file and calculate cmvn Args: kaldi_cmvn_file: kaldi text style global cmvn file, which is generated by: compute-cmvn-stats --binary=false scp:feats.scp global_cmvn Returns: a numpy array of [means, vars] """ means = [] variance = [] with open(kaldi_cmvn_file, 'r') as fid: # kaldi binary file start with '\0B' if fid.read(2) == '\0B': logger.error('kaldi cmvn binary file is not supported, please ' 'recompute it by: compute-cmvn-stats --binary=false ' ' scp:feats.scp global_cmvn') sys.exit(1) fid.seek(0) arr = fid.read().split() assert (arr[0] == '[') assert (arr[-2] == '0') assert (arr[-1] == ']') feat_dim = int((len(arr) - 2 - 2) / 2) for i in range(1, feat_dim + 1): means.append(float(arr[i])) count = float(arr[feat_dim + 1]) for i in range(feat_dim + 2, 2 * feat_dim + 2): variance.append(float(arr[i])) for i in range(len(means)): means[i] /= count variance[i] = variance[i] / count - means[i] * means[i] if variance[i] < 1.0e-20: variance[i] = 1.0e-20 variance[i] = 1.0 / math.sqrt(variance[i]) cmvn = np.array([means, variance]) return cmvn def load_cmvn(cmvn_file: str, filetype: str): """load cmvn from file. Args: cmvn_file (str): cmvn path. filetype (str): file type, optional[npz, json, kaldi]. Raises: ValueError: file type not support. Returns: Tuple[np.ndarray, np.ndarray]: mean, istd """ assert filetype in ['npz', 'json', 'kaldi'], filetype filetype = filetype.lower() if filetype == "json": cmvn = _load_json_cmvn(cmvn_file) elif filetype == "kaldi": cmvn = _load_kaldi_cmvn(cmvn_file) elif filetype == "npz": eps = 1e-14 npzfile = np.load(cmvn_file) mean = np.squeeze(npzfile["mean"]) std = np.squeeze(npzfile["std"]) istd = 1 / (std + eps) cmvn = [mean, istd] else: raise ValueError(f"cmvn file type no support: {filetype}") return cmvn[0], cmvn[1] def convert_samples_to_float32(samples): """Convert sample type to float32. Audio sample type is usually integer or float-point. Integers will be scaled to [-1, 1] in float32. PCM16 -> PCM32 """ float32_samples = samples.astype('float32') if samples.dtype in np.sctypes['int']: bits = np.iinfo(samples.dtype).bits float32_samples *= (1. / 2**(bits - 1)) elif samples.dtype in np.sctypes['float']: pass else: raise TypeError("Unsupported sample type: %s." % samples.dtype) return float32_samples def convert_samples_from_float32(samples, dtype): """Convert sample type from float32 to dtype. Audio sample type is usually integer or float-point. For integer type, float32 will be rescaled from [-1, 1] to the maximum range supported by the integer type. PCM32 -> PCM16 """ dtype = np.dtype(dtype) output_samples = samples.copy() if dtype in np.sctypes['int']: bits = np.iinfo(dtype).bits output_samples *= (2**(bits - 1) / 1.) min_val = np.iinfo(dtype).min max_val = np.iinfo(dtype).max output_samples[output_samples > max_val] = max_val output_samples[output_samples < min_val] = min_val elif samples.dtype in np.sctypes['float']: min_val = np.finfo(dtype).min max_val = np.finfo(dtype).max output_samples[output_samples > max_val] = max_val output_samples[output_samples < min_val] = min_val else: raise TypeError("Unsupported sample type: %s." % samples.dtype) return output_samples.astype(dtype)