#!/bin/bash set +x set -e . path.sh # 1. compile if [ ! -d ${SPEECHX_EXAMPLES} ]; then pushd ${SPEECHX_ROOT} bash build.sh popd fi # input mkdir -p data data=$PWD/data ckpt_dir=$data/model model_dir=$ckpt_dir/exp/deepspeech2_online/checkpoints/ vocb_dir=$ckpt_dir/data/lang_char/ if [ ! -f $ckpt_dir/data/mean_std.json ]; then mkdir -p $ckpt_dir pushd $ckpt_dir wget -c https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr0_deepspeech2_online_aishell_ckpt_0.2.0.model.tar.gz tar xzfv asr0_deepspeech2_online_aishell_ckpt_0.2.0.model.tar.gz popd fi export GLOG_logtostderr=1 # 3. gen cmvn cmvn=$data/cmvn.ark cmvn_json2kaldi_main --json_file=$ckpt_dir/data/mean_std.json --cmvn_write_path=$cmvn wfst=$data/wfst/ mkdir -p $wfst if [ ! -f $wfst/aishell_graph.zip ]; then pushd $wfst wget -c https://paddlespeech.bj.bcebos.com/s2t/paddle_asr_online/aishell_graph.zip unzip aishell_graph.zip mv aishell_graph/* $wfst popd fi # 5. test websocket server websocket_server_main \ --cmvn_file=$cmvn \ --model_path=$model_dir/avg_1.jit.pdmodel \ --param_path=$model_dir/avg_1.jit.pdiparams \ --word_symbol_table=$wfst/words.txt \ --model_output_names=softmax_0.tmp_0,tmp_5,concat_0.tmp_0,concat_1.tmp_0 \ --graph_path=$wfst/TLG.fst --max_active=7500 \ --acoustic_scale=1.2