# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Modified from espnet(https://github.com/espnet/espnet) """Fastspeech2 related modules for paddle""" from typing import Dict from typing import List from typing import Sequence from typing import Tuple from typing import Union import numpy as np import paddle import paddle.nn.functional as F from paddle import nn from typeguard import check_argument_types from paddlespeech.t2s.modules.nets_utils import initialize from paddlespeech.t2s.modules.nets_utils import make_non_pad_mask from paddlespeech.t2s.modules.nets_utils import make_pad_mask from paddlespeech.t2s.modules.predictor.duration_predictor import DurationPredictor from paddlespeech.t2s.modules.predictor.duration_predictor import DurationPredictorLoss from paddlespeech.t2s.modules.predictor.length_regulator import LengthRegulator from paddlespeech.t2s.modules.predictor.variance_predictor import VariancePredictor from paddlespeech.t2s.modules.tacotron2.decoder import Postnet from paddlespeech.t2s.modules.transformer.encoder import CNNDecoder from paddlespeech.t2s.modules.transformer.encoder import CNNPostnet from paddlespeech.t2s.modules.transformer.encoder import ConformerEncoder from paddlespeech.t2s.modules.transformer.encoder import TransformerEncoder class FastSpeech2(nn.Layer): """FastSpeech2 module. This is a module of FastSpeech2 described in `FastSpeech 2: Fast and High-Quality End-to-End Text to Speech`_. Instead of quantized pitch and energy, we use token-averaged value introduced in `FastPitch: Parallel Text-to-speech with Pitch Prediction`_. .. _`FastSpeech 2: Fast and High-Quality End-to-End Text to Speech`: https://arxiv.org/abs/2006.04558 .. _`FastPitch: Parallel Text-to-speech with Pitch Prediction`: https://arxiv.org/abs/2006.06873 Args: Returns: """ def __init__( self, # network structure related idim: int, odim: int, adim: int=384, aheads: int=4, elayers: int=6, eunits: int=1536, dlayers: int=6, dunits: int=1536, postnet_layers: int=5, postnet_chans: int=512, postnet_filts: int=5, postnet_dropout_rate: float=0.5, positionwise_layer_type: str="conv1d", positionwise_conv_kernel_size: int=1, use_scaled_pos_enc: bool=True, use_batch_norm: bool=True, encoder_normalize_before: bool=True, decoder_normalize_before: bool=True, encoder_concat_after: bool=False, decoder_concat_after: bool=False, reduction_factor: int=1, encoder_type: str="transformer", decoder_type: str="transformer", # for transformer transformer_enc_dropout_rate: float=0.1, transformer_enc_positional_dropout_rate: float=0.1, transformer_enc_attn_dropout_rate: float=0.1, transformer_dec_dropout_rate: float=0.1, transformer_dec_positional_dropout_rate: float=0.1, transformer_dec_attn_dropout_rate: float=0.1, # for conformer conformer_pos_enc_layer_type: str="rel_pos", conformer_self_attn_layer_type: str="rel_selfattn", conformer_activation_type: str="swish", use_macaron_style_in_conformer: bool=True, use_cnn_in_conformer: bool=True, zero_triu: bool=False, conformer_enc_kernel_size: int=7, conformer_dec_kernel_size: int=31, # for CNN Decoder cnn_dec_dropout_rate: float=0.2, cnn_postnet_dropout_rate: float=0.2, cnn_postnet_resblock_kernel_sizes: List[int]=[256, 256], cnn_postnet_kernel_size: int=5, cnn_decoder_embedding_dim: int=256, # duration predictor duration_predictor_layers: int=2, duration_predictor_chans: int=384, duration_predictor_kernel_size: int=3, duration_predictor_dropout_rate: float=0.1, # energy predictor energy_predictor_layers: int=2, energy_predictor_chans: int=384, energy_predictor_kernel_size: int=3, energy_predictor_dropout: float=0.5, energy_embed_kernel_size: int=9, energy_embed_dropout: float=0.5, stop_gradient_from_energy_predictor: bool=False, # pitch predictor pitch_predictor_layers: int=2, pitch_predictor_chans: int=384, pitch_predictor_kernel_size: int=3, pitch_predictor_dropout: float=0.5, pitch_embed_kernel_size: int=9, pitch_embed_dropout: float=0.5, stop_gradient_from_pitch_predictor: bool=False, # spk emb spk_num: int=None, spk_embed_dim: int=None, spk_embed_integration_type: str="add", # tone emb tone_num: int=None, tone_embed_dim: int=None, tone_embed_integration_type: str="add", # training related init_type: str="xavier_uniform", init_enc_alpha: float=1.0, init_dec_alpha: float=1.0, ): """Initialize FastSpeech2 module. Args: idim (int): Dimension of the inputs. odim (int): Dimension of the outputs. adim (int): Attention dimension. aheads (int): Number of attention heads. elayers (int): Number of encoder layers. eunits (int): Number of encoder hidden units. dlayers (int): Number of decoder layers. dunits (int): Number of decoder hidden units. postnet_layers (int): Number of postnet layers. postnet_chans (int): Number of postnet channels. postnet_filts (int): Kernel size of postnet. postnet_dropout_rate (float): Dropout rate in postnet. use_scaled_pos_enc (bool): Whether to use trainable scaled pos encoding. use_batch_norm (bool): Whether to use batch normalization in encoder prenet. encoder_normalize_before (bool): Whether to apply layernorm layer before encoder block. decoder_normalize_before (bool): Whether to apply layernorm layer before decoder block. encoder_concat_after (bool): Whether to concatenate attention layer's input and output in encoder. decoder_concat_after (bool): Whether to concatenate attention layer's input and output in decoder. reduction_factor (int): Reduction factor. encoder_type (str): Encoder type ("transformer" or "conformer"). decoder_type (str): Decoder type ("transformer" or "conformer"). transformer_enc_dropout_rate (float): Dropout rate in encoder except attention and positional encoding. transformer_enc_positional_dropout_rate (float): Dropout rate after encoder positional encoding. transformer_enc_attn_dropout_rate (float): Dropout rate in encoder self-attention module. transformer_dec_dropout_rate (float): Dropout rate in decoder except attention & positional encoding. transformer_dec_positional_dropout_rate (float): Dropout rate after decoder positional encoding. transformer_dec_attn_dropout_rate (float): Dropout rate in decoder self-attention module. conformer_pos_enc_layer_type (str): Pos encoding layer type in conformer. conformer_self_attn_layer_type (str): Self-attention layer type in conformer conformer_activation_type (str): Activation function type in conformer. use_macaron_style_in_conformer (bool): Whether to use macaron style FFN. use_cnn_in_conformer (bool): Whether to use CNN in conformer. zero_triu (bool): Whether to use zero triu in relative self-attention module. conformer_enc_kernel_size (int): Kernel size of encoder conformer. conformer_dec_kernel_size (int): Kernel size of decoder conformer. duration_predictor_layers (int): Number of duration predictor layers. duration_predictor_chans (int): Number of duration predictor channels. duration_predictor_kernel_size (int): Kernel size of duration predictor. duration_predictor_dropout_rate (float): Dropout rate in duration predictor. pitch_predictor_layers (int): Number of pitch predictor layers. pitch_predictor_chans (int): Number of pitch predictor channels. pitch_predictor_kernel_size (int): Kernel size of pitch predictor. pitch_predictor_dropout_rate (float): Dropout rate in pitch predictor. pitch_embed_kernel_size (float): Kernel size of pitch embedding. pitch_embed_dropout_rate (float): Dropout rate for pitch embedding. stop_gradient_from_pitch_predictor (bool): Whether to stop gradient from pitch predictor to encoder. energy_predictor_layers (int): Number of energy predictor layers. energy_predictor_chans (int): Number of energy predictor channels. energy_predictor_kernel_size (int): Kernel size of energy predictor. energy_predictor_dropout_rate (float): Dropout rate in energy predictor. energy_embed_kernel_size (float): Kernel size of energy embedding. energy_embed_dropout_rate (float): Dropout rate for energy embedding. stop_gradient_from_energy_predictor(bool): Whether to stop gradient from energy predictor to encoder. spk_num (Optional[int]): Number of speakers. If not None, assume that the spk_embed_dim is not None, spk_ids will be provided as the input and use spk_embedding_table. spk_embed_dim (Optional[int]): Speaker embedding dimension. If not None, assume that spk_emb will be provided as the input or spk_num is not None. spk_embed_integration_type (str): How to integrate speaker embedding. tone_num (Optional[int]): Number of tones. If not None, assume that the tone_ids will be provided as the input and use tone_embedding_table. tone_embed_dim (Optional[int]): Tone embedding dimension. If not None, assume that tone_num is not None. tone_embed_integration_type (str): How to integrate tone embedding. init_type (str): How to initialize transformer parameters. init_enc_alpha (float): Initial value of alpha in scaled pos encoding of the encoder. init_dec_alpha (float): Initial value of alpha in scaled pos encoding of the decoder. """ assert check_argument_types() super().__init__() # store hyperparameters self.idim = idim self.odim = odim self.eos = idim - 1 self.reduction_factor = reduction_factor self.encoder_type = encoder_type self.decoder_type = decoder_type self.stop_gradient_from_pitch_predictor = stop_gradient_from_pitch_predictor self.stop_gradient_from_energy_predictor = stop_gradient_from_energy_predictor self.use_scaled_pos_enc = use_scaled_pos_enc self.spk_embed_dim = spk_embed_dim if self.spk_embed_dim is not None: self.spk_embed_integration_type = spk_embed_integration_type self.tone_embed_dim = tone_embed_dim if self.tone_embed_dim is not None: self.tone_embed_integration_type = tone_embed_integration_type # use idx 0 as padding idx self.padding_idx = 0 # initialize parameters initialize(self, init_type) if spk_num and self.spk_embed_dim: self.spk_embedding_table = nn.Embedding( num_embeddings=spk_num, embedding_dim=self.spk_embed_dim, padding_idx=self.padding_idx) if self.tone_embed_dim is not None: self.tone_embedding_table = nn.Embedding( num_embeddings=tone_num, embedding_dim=self.tone_embed_dim, padding_idx=self.padding_idx) # get positional encoding layer type transformer_pos_enc_layer_type = "scaled_abs_pos" if self.use_scaled_pos_enc else "abs_pos" # define encoder encoder_input_layer = nn.Embedding( num_embeddings=idim, embedding_dim=adim, padding_idx=self.padding_idx) if encoder_type == "transformer": self.encoder = TransformerEncoder( idim=idim, attention_dim=adim, attention_heads=aheads, linear_units=eunits, num_blocks=elayers, input_layer=encoder_input_layer, dropout_rate=transformer_enc_dropout_rate, positional_dropout_rate=transformer_enc_positional_dropout_rate, attention_dropout_rate=transformer_enc_attn_dropout_rate, pos_enc_layer_type=transformer_pos_enc_layer_type, normalize_before=encoder_normalize_before, concat_after=encoder_concat_after, positionwise_layer_type=positionwise_layer_type, positionwise_conv_kernel_size=positionwise_conv_kernel_size, ) elif encoder_type == "conformer": self.encoder = ConformerEncoder( idim=idim, attention_dim=adim, attention_heads=aheads, linear_units=eunits, num_blocks=elayers, input_layer=encoder_input_layer, dropout_rate=transformer_enc_dropout_rate, positional_dropout_rate=transformer_enc_positional_dropout_rate, attention_dropout_rate=transformer_enc_attn_dropout_rate, normalize_before=encoder_normalize_before, concat_after=encoder_concat_after, positionwise_layer_type=positionwise_layer_type, positionwise_conv_kernel_size=positionwise_conv_kernel_size, macaron_style=use_macaron_style_in_conformer, pos_enc_layer_type=conformer_pos_enc_layer_type, selfattention_layer_type=conformer_self_attn_layer_type, activation_type=conformer_activation_type, use_cnn_module=use_cnn_in_conformer, cnn_module_kernel=conformer_enc_kernel_size, zero_triu=zero_triu, ) else: raise ValueError(f"{encoder_type} is not supported.") # define additional projection for speaker embedding if self.spk_embed_dim is not None: if self.spk_embed_integration_type == "add": self.spk_projection = nn.Linear(self.spk_embed_dim, adim) else: self.spk_projection = nn.Linear(adim + self.spk_embed_dim, adim) # define additional projection for tone embedding if self.tone_embed_dim is not None: if self.tone_embed_integration_type == "add": self.tone_projection = nn.Linear(self.tone_embed_dim, adim) else: self.tone_projection = nn.Linear(adim + self.tone_embed_dim, adim) # define duration predictor self.duration_predictor = DurationPredictor( idim=adim, n_layers=duration_predictor_layers, n_chans=duration_predictor_chans, kernel_size=duration_predictor_kernel_size, dropout_rate=duration_predictor_dropout_rate, ) # define pitch predictor self.pitch_predictor = VariancePredictor( idim=adim, n_layers=pitch_predictor_layers, n_chans=pitch_predictor_chans, kernel_size=pitch_predictor_kernel_size, dropout_rate=pitch_predictor_dropout, ) # We use continuous pitch + FastPitch style avg self.pitch_embed = nn.Sequential( nn.Conv1D( in_channels=1, out_channels=adim, kernel_size=pitch_embed_kernel_size, padding=(pitch_embed_kernel_size - 1) // 2, ), nn.Dropout(pitch_embed_dropout), ) # define energy predictor self.energy_predictor = VariancePredictor( idim=adim, n_layers=energy_predictor_layers, n_chans=energy_predictor_chans, kernel_size=energy_predictor_kernel_size, dropout_rate=energy_predictor_dropout, ) # We use continuous enegy + FastPitch style avg self.energy_embed = nn.Sequential( nn.Conv1D( in_channels=1, out_channels=adim, kernel_size=energy_embed_kernel_size, padding=(energy_embed_kernel_size - 1) // 2, ), nn.Dropout(energy_embed_dropout), ) # define length regulator self.length_regulator = LengthRegulator() # define decoder # NOTE: we use encoder as decoder # because fastspeech's decoder is the same as encoder if decoder_type == "transformer": self.decoder = TransformerEncoder( idim=0, attention_dim=adim, attention_heads=aheads, linear_units=dunits, num_blocks=dlayers, # in decoder, don't need layer before pos_enc_class (we use embedding here in encoder) input_layer=None, dropout_rate=transformer_dec_dropout_rate, positional_dropout_rate=transformer_dec_positional_dropout_rate, attention_dropout_rate=transformer_dec_attn_dropout_rate, pos_enc_layer_type=transformer_pos_enc_layer_type, normalize_before=decoder_normalize_before, concat_after=decoder_concat_after, positionwise_layer_type=positionwise_layer_type, positionwise_conv_kernel_size=positionwise_conv_kernel_size, ) elif decoder_type == "conformer": self.decoder = ConformerEncoder( idim=0, attention_dim=adim, attention_heads=aheads, linear_units=dunits, num_blocks=dlayers, input_layer=None, dropout_rate=transformer_dec_dropout_rate, positional_dropout_rate=transformer_dec_positional_dropout_rate, attention_dropout_rate=transformer_dec_attn_dropout_rate, normalize_before=decoder_normalize_before, concat_after=decoder_concat_after, positionwise_layer_type=positionwise_layer_type, positionwise_conv_kernel_size=positionwise_conv_kernel_size, macaron_style=use_macaron_style_in_conformer, pos_enc_layer_type=conformer_pos_enc_layer_type, selfattention_layer_type=conformer_self_attn_layer_type, activation_type=conformer_activation_type, use_cnn_module=use_cnn_in_conformer, cnn_module_kernel=conformer_dec_kernel_size, ) elif decoder_type == 'cnndecoder': self.decoder = CNNDecoder( emb_dim=adim, odim=odim, kernel_size=cnn_postnet_kernel_size, dropout_rate=cnn_dec_dropout_rate, resblock_kernel_sizes=cnn_postnet_resblock_kernel_sizes) else: raise ValueError(f"{decoder_type} is not supported.") # define final projection self.feat_out = nn.Linear(adim, odim * reduction_factor) # define postnet if decoder_type == 'cnndecoder': self.postnet = CNNPostnet( odim=odim, kernel_size=cnn_postnet_kernel_size, dropout_rate=cnn_postnet_dropout_rate, resblock_kernel_sizes=cnn_postnet_resblock_kernel_sizes) else: self.postnet = (None if postnet_layers == 0 else Postnet( idim=idim, odim=odim, n_layers=postnet_layers, n_chans=postnet_chans, n_filts=postnet_filts, use_batch_norm=use_batch_norm, dropout_rate=postnet_dropout_rate, )) nn.initializer.set_global_initializer(None) self._reset_parameters( init_enc_alpha=init_enc_alpha, init_dec_alpha=init_dec_alpha, ) def forward( self, text: paddle.Tensor, text_lengths: paddle.Tensor, speech: paddle.Tensor, speech_lengths: paddle.Tensor, durations: paddle.Tensor, pitch: paddle.Tensor, energy: paddle.Tensor, tone_id: paddle.Tensor=None, spk_emb: paddle.Tensor=None, spk_id: paddle.Tensor=None ) -> Tuple[paddle.Tensor, Dict[str, paddle.Tensor], paddle.Tensor]: """Calculate forward propagation. Args: text(Tensor(int64)): Batch of padded token ids (B, Tmax). text_lengths(Tensor(int64)): Batch of lengths of each input (B,). speech(Tensor): Batch of padded target features (B, Lmax, odim). speech_lengths(Tensor(int64)): Batch of the lengths of each target (B,). durations(Tensor(int64)): Batch of padded durations (B, Tmax). pitch(Tensor): Batch of padded token-averaged pitch (B, Tmax, 1). energy(Tensor): Batch of padded token-averaged energy (B, Tmax, 1). tone_id(Tensor, optional(int64)): Batch of padded tone ids (B, Tmax). spk_emb(Tensor, optional): Batch of speaker embeddings (B, spk_embed_dim). spk_id(Tnesor, optional(int64)): Batch of speaker ids (B,) Returns: """ # input of embedding must be int64 xs = paddle.cast(text, 'int64') ilens = paddle.cast(text_lengths, 'int64') ds = paddle.cast(durations, 'int64') olens = paddle.cast(speech_lengths, 'int64') ys = speech ps = pitch es = energy if spk_id is not None: spk_id = paddle.cast(spk_id, 'int64') if tone_id is not None: tone_id = paddle.cast(tone_id, 'int64') # forward propagation before_outs, after_outs, d_outs, p_outs, e_outs = self._forward( xs, ilens, olens, ds, ps, es, is_inference=False, spk_emb=spk_emb, spk_id=spk_id, tone_id=tone_id) # modify mod part of groundtruth if self.reduction_factor > 1: olens = olens - olens % self.reduction_factor max_olen = max(olens) ys = ys[:, :max_olen] return before_outs, after_outs, d_outs, p_outs, e_outs, ys, olens def _forward(self, xs: paddle.Tensor, ilens: paddle.Tensor, olens: paddle.Tensor=None, ds: paddle.Tensor=None, ps: paddle.Tensor=None, es: paddle.Tensor=None, is_inference: bool=False, return_after_enc=False, alpha: float=1.0, spk_emb=None, spk_id=None, tone_id=None) -> Sequence[paddle.Tensor]: # forward encoder x_masks = self._source_mask(ilens) # (B, Tmax, adim) hs, _ = self.encoder(xs, x_masks) # integrate speaker embedding if self.spk_embed_dim is not None: # spk_emb has a higher priority than spk_id if spk_emb is not None: hs = self._integrate_with_spk_embed(hs, spk_emb) elif spk_id is not None: spk_emb = self.spk_embedding_table(spk_id) hs = self._integrate_with_spk_embed(hs, spk_emb) # integrate tone embedding if self.tone_embed_dim is not None: if tone_id is not None: tone_embs = self.tone_embedding_table(tone_id) hs = self._integrate_with_tone_embed(hs, tone_embs) # forward duration predictor and variance predictors d_masks = make_pad_mask(ilens) if self.stop_gradient_from_pitch_predictor: p_outs = self.pitch_predictor(hs.detach(), d_masks.unsqueeze(-1)) else: p_outs = self.pitch_predictor(hs, d_masks.unsqueeze(-1)) if self.stop_gradient_from_energy_predictor: e_outs = self.energy_predictor(hs.detach(), d_masks.unsqueeze(-1)) else: e_outs = self.energy_predictor(hs, d_masks.unsqueeze(-1)) if is_inference: # (B, Tmax) if ds is not None: d_outs = ds else: d_outs = self.duration_predictor.inference(hs, d_masks) if ps is not None: p_outs = ps if es is not None: e_outs = es # use prediction in inference # (B, Tmax, 1) p_embs = self.pitch_embed(p_outs.transpose((0, 2, 1))).transpose( (0, 2, 1)) e_embs = self.energy_embed(e_outs.transpose((0, 2, 1))).transpose( (0, 2, 1)) hs = hs + e_embs + p_embs # (B, Lmax, adim) hs = self.length_regulator(hs, d_outs, alpha, is_inference=True) else: d_outs = self.duration_predictor(hs, d_masks) # use groundtruth in training p_embs = self.pitch_embed(ps.transpose((0, 2, 1))).transpose( (0, 2, 1)) e_embs = self.energy_embed(es.transpose((0, 2, 1))).transpose( (0, 2, 1)) hs = hs + e_embs + p_embs # (B, Lmax, adim) hs = self.length_regulator(hs, ds, is_inference=False) # forward decoder if olens is not None and not is_inference: if self.reduction_factor > 1: olens_in = paddle.to_tensor( [olen // self.reduction_factor for olen in olens.numpy()]) else: olens_in = olens # (B, 1, T) h_masks = self._source_mask(olens_in) else: h_masks = None if return_after_enc: return hs, h_masks if self.decoder_type == 'cnndecoder': # remove output masks for dygraph to static graph zs = self.decoder(hs, h_masks) before_outs = zs else: # (B, Lmax, adim) zs, _ = self.decoder(hs, h_masks) # (B, Lmax, odim) before_outs = self.feat_out(zs).reshape( (paddle.shape(zs)[0], -1, self.odim)) # postnet -> (B, Lmax//r * r, odim) if self.postnet is None: after_outs = before_outs else: after_outs = before_outs + self.postnet( before_outs.transpose((0, 2, 1))).transpose((0, 2, 1)) return before_outs, after_outs, d_outs, p_outs, e_outs def encoder_infer( self, text: paddle.Tensor, alpha: float=1.0, spk_emb=None, spk_id=None, tone_id=None, ) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]: # input of embedding must be int64 x = paddle.cast(text, 'int64') # setup batch axis ilens = paddle.shape(x)[0] xs = x.unsqueeze(0) if spk_emb is not None: spk_emb = spk_emb.unsqueeze(0) if tone_id is not None: tone_id = tone_id.unsqueeze(0) # (1, L, odim) # use *_ to avoid bug in dygraph to static graph hs, *_ = self._forward( xs, ilens, is_inference=True, return_after_enc=True, alpha=alpha, spk_emb=spk_emb, spk_id=spk_id, tone_id=tone_id) return hs def inference( self, text: paddle.Tensor, durations: paddle.Tensor=None, pitch: paddle.Tensor=None, energy: paddle.Tensor=None, alpha: float=1.0, use_teacher_forcing: bool=False, spk_emb=None, spk_id=None, tone_id=None, ) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]: """Generate the sequence of features given the sequences of characters. Args: text(Tensor(int64)): Input sequence of characters (T,). durations(Tensor, optional (int64)): Groundtruth of duration (T,). pitch(Tensor, optional): Groundtruth of token-averaged pitch (T, 1). energy(Tensor, optional): Groundtruth of token-averaged energy (T, 1). alpha(float, optional): Alpha to control the speed. use_teacher_forcing(bool, optional): Whether to use teacher forcing. If true, groundtruth of duration, pitch and energy will be used. spk_emb(Tensor, optional, optional): peaker embedding vector (spk_embed_dim,). (Default value = None) spk_id(Tensor, optional(int64), optional): spk ids (1,). (Default value = None) tone_id(Tensor, optional(int64), optional): tone ids (T,). (Default value = None) Returns: """ # input of embedding must be int64 x = paddle.cast(text, 'int64') d, p, e = durations, pitch, energy # setup batch axis ilens = paddle.shape(x)[0] xs = x.unsqueeze(0) if spk_emb is not None: spk_emb = spk_emb.unsqueeze(0) if tone_id is not None: tone_id = tone_id.unsqueeze(0) if use_teacher_forcing: # use groundtruth of duration, pitch, and energy ds = d.unsqueeze(0) if d is not None else None ps = p.unsqueeze(0) if p is not None else None es = e.unsqueeze(0) if e is not None else None # (1, L, odim) _, outs, d_outs, p_outs, e_outs = self._forward( xs, ilens, ds=ds, ps=ps, es=es, spk_emb=spk_emb, spk_id=spk_id, tone_id=tone_id, is_inference=True) else: # (1, L, odim) _, outs, d_outs, p_outs, e_outs = self._forward( xs, ilens, is_inference=True, alpha=alpha, spk_emb=spk_emb, spk_id=spk_id, tone_id=tone_id) return outs[0], d_outs[0], p_outs[0], e_outs[0] def _integrate_with_spk_embed(self, hs, spk_emb): """Integrate speaker embedding with hidden states. Args: hs(Tensor): Batch of hidden state sequences (B, Tmax, adim). spk_emb(Tensor): Batch of speaker embeddings (B, spk_embed_dim). Returns: """ if self.spk_embed_integration_type == "add": # apply projection and then add to hidden states spk_emb = self.spk_projection(F.normalize(spk_emb)) hs = hs + spk_emb.unsqueeze(1) elif self.spk_embed_integration_type == "concat": # concat hidden states with spk embeds and then apply projection spk_emb = F.normalize(spk_emb).unsqueeze(1).expand( shape=[-1, paddle.shape(hs)[1], -1]) hs = self.spk_projection(paddle.concat([hs, spk_emb], axis=-1)) else: raise NotImplementedError("support only add or concat.") return hs def _integrate_with_tone_embed(self, hs, tone_embs): """Integrate speaker embedding with hidden states. Args: hs(Tensor): Batch of hidden state sequences (B, Tmax, adim). tone_embs(Tensor): Batch of speaker embeddings (B, Tmax, tone_embed_dim). Returns: """ if self.tone_embed_integration_type == "add": # apply projection and then add to hidden states tone_embs = self.tone_projection(F.normalize(tone_embs)) hs = hs + tone_embs elif self.tone_embed_integration_type == "concat": # concat hidden states with tone embeds and then apply projection tone_embs = F.normalize(tone_embs).expand( shape=[-1, hs.shape[1], -1]) hs = self.tone_projection(paddle.concat([hs, tone_embs], axis=-1)) else: raise NotImplementedError("support only add or concat.") return hs def _source_mask(self, ilens: paddle.Tensor) -> paddle.Tensor: """Make masks for self-attention. Args: ilens(Tensor): Batch of lengths (B,). Returns: Tensor: Mask tensor for self-attention. dtype=paddle.bool Examples: >>> ilens = [5, 3] >>> self._source_mask(ilens) tensor([[[1, 1, 1, 1, 1], [1, 1, 1, 0, 0]]]) bool """ x_masks = make_non_pad_mask(ilens) return x_masks.unsqueeze(-2) def _reset_parameters(self, init_enc_alpha: float, init_dec_alpha: float): # initialize alpha in scaled positional encoding if self.encoder_type == "transformer" and self.use_scaled_pos_enc: init_enc_alpha = paddle.to_tensor(init_enc_alpha) self.encoder.embed[-1].alpha = paddle.create_parameter( shape=init_enc_alpha.shape, dtype=str(init_enc_alpha.numpy().dtype), default_initializer=paddle.nn.initializer.Assign( init_enc_alpha)) if self.decoder_type == "transformer" and self.use_scaled_pos_enc: init_dec_alpha = paddle.to_tensor(init_dec_alpha) self.decoder.embed[-1].alpha = paddle.create_parameter( shape=init_dec_alpha.shape, dtype=str(init_dec_alpha.numpy().dtype), default_initializer=paddle.nn.initializer.Assign( init_dec_alpha)) class FastSpeech2Inference(nn.Layer): def __init__(self, normalizer, model): super().__init__() self.normalizer = normalizer self.acoustic_model = model def forward(self, text, spk_id=None, spk_emb=None): normalized_mel, d_outs, p_outs, e_outs = self.acoustic_model.inference( text, spk_id=spk_id, spk_emb=spk_emb) logmel = self.normalizer.inverse(normalized_mel) return logmel class StyleFastSpeech2Inference(FastSpeech2Inference): def __init__(self, normalizer, model, pitch_stats_path=None, energy_stats_path=None): super().__init__(normalizer, model) if pitch_stats_path: pitch_mean, pitch_std = np.load(pitch_stats_path) self.pitch_mean = paddle.to_tensor(pitch_mean) self.pitch_std = paddle.to_tensor(pitch_std) if energy_stats_path: energy_mean, energy_std = np.load(energy_stats_path) self.energy_mean = paddle.to_tensor(energy_mean) self.energy_std = paddle.to_tensor(energy_std) def denorm(self, data, mean, std): return data * std + mean def norm(self, data, mean, std): return (data - mean) / std def forward(self, text: paddle.Tensor, durations: Union[paddle.Tensor, np.ndarray]=None, durations_scale: Union[int, float]=None, durations_bias: Union[int, float]=None, pitch: Union[paddle.Tensor, np.ndarray]=None, pitch_scale: Union[int, float]=None, pitch_bias: Union[int, float]=None, energy: Union[paddle.Tensor, np.ndarray]=None, energy_scale: Union[int, float]=None, energy_bias: Union[int, float]=None, robot: bool=False, spk_emb=None, spk_id=None): """ Args: text(Tensor(int64)): Input sequence of characters (T,). durations(paddle.Tensor/np.ndarray, optional (int64)): Groundtruth of duration (T,), this will overwrite the set of durations_scale and durations_bias durations_scale(int/float, optional): durations_bias(int/float, optional): pitch(paddle.Tensor/np.ndarray, optional): Groundtruth of token-averaged pitch (T, 1), this will overwrite the set of pitch_scale and pitch_bias pitch_scale(int/float, optional): In denormed HZ domain. pitch_bias(int/float, optional): In denormed HZ domain. energy(paddle.Tensor/np.ndarray, optional): Groundtruth of token-averaged energy (T, 1), this will overwrite the set of energy_scale and energy_bias energy_scale(int/float, optional): In denormed domain. energy_bias(int/float, optional): In denormed domain. robot: bool: (Default value = False) spk_emb: (Default value = None) spk_id: (Default value = None) Returns: Tensor: logmel """ normalized_mel, d_outs, p_outs, e_outs = self.acoustic_model.inference( text, durations=None, pitch=None, energy=None, spk_emb=spk_emb, spk_id=spk_id) # priority: groundtruth > scale/bias > previous output # set durations if isinstance(durations, np.ndarray): durations = paddle.to_tensor(durations) elif isinstance(durations, paddle.Tensor): durations = durations elif durations_scale or durations_bias: durations_scale = durations_scale if durations_scale is not None else 1 durations_bias = durations_bias if durations_bias is not None else 0 durations = durations_scale * d_outs + durations_bias else: durations = d_outs if robot: # set normed pitch to zeros have the same effect with set denormd ones to mean pitch = paddle.zeros(p_outs.shape) # set pitch, can overwrite robot set if isinstance(pitch, np.ndarray): pitch = paddle.to_tensor(pitch) elif isinstance(pitch, paddle.Tensor): pitch = pitch elif pitch_scale or pitch_bias: pitch_scale = pitch_scale if pitch_scale is not None else 1 pitch_bias = pitch_bias if pitch_bias is not None else 0 p_Hz = paddle.exp( self.denorm(p_outs, self.pitch_mean, self.pitch_std)) p_HZ = pitch_scale * p_Hz + pitch_bias pitch = self.norm(paddle.log(p_HZ), self.pitch_mean, self.pitch_std) else: pitch = p_outs # set energy if isinstance(energy, np.ndarray): energy = paddle.to_tensor(energy) elif isinstance(energy, paddle.Tensor): energy = energy elif energy_scale or energy_bias: energy_scale = energy_scale if energy_scale is not None else 1 energy_bias = energy_bias if energy_bias is not None else 0 e_dnorm = self.denorm(e_outs, self.energy_mean, self.energy_std) e_dnorm = energy_scale * e_dnorm + energy_bias energy = self.norm(e_dnorm, self.energy_mean, self.energy_std) else: energy = e_outs normalized_mel, d_outs, p_outs, e_outs = self.acoustic_model.inference( text, durations=durations, pitch=pitch, energy=energy, use_teacher_forcing=True, spk_emb=spk_emb, spk_id=spk_id) logmel = self.normalizer.inverse(normalized_mel) return logmel class FastSpeech2Loss(nn.Layer): """Loss function module for FastSpeech2.""" def __init__(self, use_masking: bool=True, use_weighted_masking: bool=False): """Initialize feed-forward Transformer loss module. Args: use_masking (bool): Whether to apply masking for padded part in loss calculation. use_weighted_masking (bool): Whether to weighted masking in loss calculation. """ assert check_argument_types() super().__init__() assert (use_masking != use_weighted_masking) or not use_masking self.use_masking = use_masking self.use_weighted_masking = use_weighted_masking # define criterions reduction = "none" if self.use_weighted_masking else "mean" self.l1_criterion = nn.L1Loss(reduction=reduction) self.mse_criterion = nn.MSELoss(reduction=reduction) self.duration_criterion = DurationPredictorLoss(reduction=reduction) def forward( self, after_outs: paddle.Tensor, before_outs: paddle.Tensor, d_outs: paddle.Tensor, p_outs: paddle.Tensor, e_outs: paddle.Tensor, ys: paddle.Tensor, ds: paddle.Tensor, ps: paddle.Tensor, es: paddle.Tensor, ilens: paddle.Tensor, olens: paddle.Tensor, ) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor]: """Calculate forward propagation. Args: after_outs(Tensor): Batch of outputs after postnets (B, Lmax, odim). before_outs(Tensor): Batch of outputs before postnets (B, Lmax, odim). d_outs(Tensor): Batch of outputs of duration predictor (B, Tmax). p_outs(Tensor): Batch of outputs of pitch predictor (B, Tmax, 1). e_outs(Tensor): Batch of outputs of energy predictor (B, Tmax, 1). ys(Tensor): Batch of target features (B, Lmax, odim). ds(Tensor): Batch of durations (B, Tmax). ps(Tensor): Batch of target token-averaged pitch (B, Tmax, 1). es(Tensor): Batch of target token-averaged energy (B, Tmax, 1). ilens(Tensor): Batch of the lengths of each input (B,). olens(Tensor): Batch of the lengths of each target (B,). Returns: """ # apply mask to remove padded part if self.use_masking: out_masks = make_non_pad_mask(olens).unsqueeze(-1) before_outs = before_outs.masked_select( out_masks.broadcast_to(before_outs.shape)) if after_outs is not None: after_outs = after_outs.masked_select( out_masks.broadcast_to(after_outs.shape)) ys = ys.masked_select(out_masks.broadcast_to(ys.shape)) duration_masks = make_non_pad_mask(ilens) d_outs = d_outs.masked_select( duration_masks.broadcast_to(d_outs.shape)) ds = ds.masked_select(duration_masks.broadcast_to(ds.shape)) pitch_masks = make_non_pad_mask(ilens).unsqueeze(-1) p_outs = p_outs.masked_select( pitch_masks.broadcast_to(p_outs.shape)) e_outs = e_outs.masked_select( pitch_masks.broadcast_to(e_outs.shape)) ps = ps.masked_select(pitch_masks.broadcast_to(ps.shape)) es = es.masked_select(pitch_masks.broadcast_to(es.shape)) # calculate loss l1_loss = self.l1_criterion(before_outs, ys) if after_outs is not None: l1_loss += self.l1_criterion(after_outs, ys) duration_loss = self.duration_criterion(d_outs, ds) pitch_loss = self.mse_criterion(p_outs, ps) energy_loss = self.mse_criterion(e_outs, es) # make weighted mask and apply it if self.use_weighted_masking: out_masks = make_non_pad_mask(olens).unsqueeze(-1) out_weights = out_masks.cast(dtype=paddle.float32) / out_masks.cast( dtype=paddle.float32).sum( axis=1, keepdim=True) out_weights /= ys.shape[0] * ys.shape[2] duration_masks = make_non_pad_mask(ilens) duration_weights = (duration_masks.cast(dtype=paddle.float32) / duration_masks.cast(dtype=paddle.float32).sum( axis=1, keepdim=True)) duration_weights /= ds.shape[0] # apply weight l1_loss = l1_loss.multiply(out_weights) l1_loss = l1_loss.masked_select( out_masks.broadcast_to(l1_loss.shape)).sum() duration_loss = (duration_loss.multiply(duration_weights) .masked_select(duration_masks).sum()) pitch_masks = duration_masks.unsqueeze(-1) pitch_weights = duration_weights.unsqueeze(-1) pitch_loss = pitch_loss.multiply(pitch_weights) pitch_loss = pitch_loss.masked_select( pitch_masks.broadcast_to(pitch_loss.shape)).sum() energy_loss = energy_loss.multiply(pitch_weights) energy_loss = energy_loss.masked_select( pitch_masks.broadcast_to(energy_loss.shape)).sum() return l1_loss, duration_loss, pitch_loss, energy_loss