#!/bin/bash set -e . ./path.sh || exit 1; . ./cmd.sh || exit 1; gpus=0,1,2,3 stage=1 stop_stage=4 conf_path=conf/transformer_mtl_noam.yaml ckpt_path= # paddle.98 # (finetune from FAT-ST pretrained model) avg_num=5 data_path=./TED_EnZh # path to unzipped data source ${MAIN_ROOT}/utils/parse_options.sh || exit 1; avg_ckpt=avg_${avg_num} ckpt=$(basename ${conf_path} | awk -F'.' '{print $1}') echo "checkpoint name ${ckpt}" if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then # prepare data bash ./local/data.sh --data_dir ${data_path} || exit -1 fi if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then # train model, all `ckpt` under `exp` dir if [ -n "${ckpt_path}" ]; then echo "Finetune from Pretrained Model" ${ckpt_path} ./local/download_pretrain.sh || exit -1 fi CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${ckpt} "${ckpt_path}" fi if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then # avg n best model avg.sh best exp/${ckpt}/checkpoints ${avg_num} fi if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then # test ckpt avg_n CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1 fi