# This is the parameter configuration file for PaddleSpeech Serving. ################################################################################# # SERVER SETTING # ################################################################################# host: 127.0.0.1 port: 8090 # The task format in the engin_list is: _ # task choices = ['asr_python', 'asr_inference', 'tts_python', 'tts_inference'] #engine_list: ['asr_python', 'tts_python', 'cls_python'] engine_list: ['cls_inference'] #engine_list: ['asr_python', 'cls_python'] ################################################################################# # ENGINE CONFIG # ################################################################################# ################################### ASR ######################################### ################### speech task: asr; engine_type: python ####################### asr_python: model: 'conformer_wenetspeech' lang: 'zh' sample_rate: 16000 cfg_path: # [optional] ckpt_path: # [optional] decode_method: 'attention_rescoring' force_yes: True device: # set 'gpu:id' or 'cpu' ################### speech task: asr; engine_type: inference ####################### asr_inference: # model_type choices=['deepspeech2offline_aishell'] model_type: 'deepspeech2offline_aishell' am_model: # the pdmodel file of am static model [optional] am_params: # the pdiparams file of am static model [optional] lang: 'zh' sample_rate: 16000 cfg_path: decode_method: force_yes: True am_predictor_conf: device: # set 'gpu:id' or 'cpu' switch_ir_optim: True glog_info: False # True -> print glog summary: True # False -> do not show predictor config ################################### TTS ######################################### ################### speech task: tts; engine_type: python ####################### tts_python: # am (acoustic model) choices=['speedyspeech_csmsc', 'fastspeech2_csmsc', # 'fastspeech2_ljspeech', 'fastspeech2_aishell3', # 'fastspeech2_vctk'] am: 'fastspeech2_csmsc' am_config: am_ckpt: am_stat: phones_dict: tones_dict: speaker_dict: spk_id: 0 # voc (vocoder) choices=['pwgan_csmsc', 'pwgan_ljspeech', 'pwgan_aishell3', # 'pwgan_vctk', 'mb_melgan_csmsc'] voc: 'pwgan_csmsc' voc_config: voc_ckpt: voc_stat: # others lang: 'zh' device: # set 'gpu:id' or 'cpu' ################### speech task: tts; engine_type: inference ####################### tts_inference: # am (acoustic model) choices=['speedyspeech_csmsc', 'fastspeech2_csmsc'] am: 'fastspeech2_csmsc' am_model: # the pdmodel file of your am static model (XX.pdmodel) am_params: # the pdiparams file of your am static model (XX.pdipparams) am_sample_rate: 24000 phones_dict: tones_dict: speaker_dict: spk_id: 0 am_predictor_conf: device: # set 'gpu:id' or 'cpu' switch_ir_optim: True glog_info: False # True -> print glog summary: True # False -> do not show predictor config # voc (vocoder) choices=['pwgan_csmsc', 'mb_melgan_csmsc','hifigan_csmsc'] voc: 'pwgan_csmsc' voc_model: # the pdmodel file of your vocoder static model (XX.pdmodel) voc_params: # the pdiparams file of your vocoder static model (XX.pdipparams) voc_sample_rate: 24000 voc_predictor_conf: device: # set 'gpu:id' or 'cpu' switch_ir_optim: True glog_info: False # True -> print glog summary: True # False -> do not show predictor config # others lang: 'zh' ################################### CLS ######################################### ################### speech task: cls; engine_type: python ####################### cls_python: # model choices=['panns_cnn14', 'panns_cnn10', 'panns_cnn6'] model: 'panns_cnn14' cfg_path: # [optional] Config of cls task. ckpt_path: # [optional] Checkpoint file of model. label_file: # [optional] Label file of cls task. device: # set 'gpu:id' or 'cpu' ################### speech task: cls; engine_type: inference ####################### cls_inference: # model_type choices=['panns_cnn14', 'panns_cnn10', 'panns_cnn6'] model_type: 'panns_cnn14' cfg_path: model_path: # the pdmodel file of am static model [optional] params_path: # the pdiparams file of am static model [optional] label_file: # [optional] Label file of cls task. predictor_conf: device: # set 'gpu:id' or 'cpu' switch_ir_optim: True glog_info: False # True -> print glog summary: True # False -> do not show predictor config