#!/usr/bin/env python3 import argparse import logging import sys from paddlespeech.audio.transform.transformation import Transformation from paddlespeech.s2t.utils.cli_readers import file_reader_helper from paddlespeech.s2t.utils.cli_utils import get_commandline_args from paddlespeech.s2t.utils.cli_utils import is_scipy_wav_style def get_parser(): parser = argparse.ArgumentParser( description="convert feature to its shape", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "--verbose", "-V", default=0, type=int, help="Verbose option") parser.add_argument( "--filetype", type=str, default="mat", choices=["mat", "hdf5", "sound.hdf5", "sound"], help="Specify the file format for the rspecifier. " '"mat" is the matrix format in kaldi', ) parser.add_argument( "--preprocess-conf", type=str, default=None, help="The configuration file for the pre-processing", ) parser.add_argument( "rspecifier", type=str, help="Read specifier for feats. e.g. ark:some.ark") parser.add_argument( "out", nargs="?", type=argparse.FileType("w"), default=sys.stdout, help="The output filename. " "If omitted, then output to sys.stdout", ) return parser def main(): parser = get_parser() args = parser.parse_args() # logging info logfmt = "%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s" if args.verbose > 0: logging.basicConfig(level=logging.INFO, format=logfmt) else: logging.basicConfig(level=logging.WARN, format=logfmt) logging.info(get_commandline_args()) if args.preprocess_conf is not None: preprocessing = Transformation(args.preprocess_conf) logging.info("Apply preprocessing: {}".format(preprocessing)) else: preprocessing = None # There are no necessary for matrix without preprocessing, # so change to file_reader_helper to return shape. # This make sense only with filetype="hdf5". for utt, mat in file_reader_helper( args.rspecifier, args.filetype, return_shape=preprocessing is None): if preprocessing is not None: if is_scipy_wav_style(mat): # If data is sound file, then got as Tuple[int, ndarray] rate, mat = mat mat = preprocessing(mat, uttid_list=utt) shape_str = ",".join(map(str, mat.shape)) else: if len(mat) == 2 and isinstance(mat[1], tuple): # If data is sound file, Tuple[int, Tuple[int, ...]] rate, mat = mat shape_str = ",".join(map(str, mat)) args.out.write("{} {}\n".format(utt, shape_str)) if __name__ == "__main__": main()