# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional from paddle.io import Dataset from yacs.config import CfgNode from deepspeech.utils.log import Log __all__ = ["ManifestDataset", "TripletManifestDataset", "TransformDataset"] logger = Log(__name__).getlog() class ManifestDataset(Dataset): @classmethod def params(cls, config: Optional[CfgNode]=None) -> CfgNode: default = CfgNode( dict( manifest="", max_input_len=27.0, min_input_len=0.0, max_output_len=float('inf'), min_output_len=0.0, max_output_input_ratio=float('inf'), min_output_input_ratio=0.0, )) if config is not None: config.merge_from_other_cfg(default) return default @classmethod def from_config(cls, config): """Build a ManifestDataset object from a config. Args: config (yacs.config.CfgNode): configs object. Returns: ManifestDataset: dataet object. """ assert 'manifest' in config.data assert config.data.manifest dataset = cls( manifest_path=config.data.manifest, max_input_len=config.data.max_input_len, min_input_len=config.data.min_input_len, max_output_len=config.data.max_output_len, min_output_len=config.data.min_output_len, max_output_input_ratio=config.data.max_output_input_ratio, min_output_input_ratio=config.data.min_output_input_ratio, ) return dataset def __init__(self, manifest_path, max_input_len=float('inf'), min_input_len=0.0, max_output_len=float('inf'), min_output_len=0.0, max_output_input_ratio=float('inf'), min_output_input_ratio=0.0): """Manifest Dataset Args: manifest_path (str): manifest josn file path max_input_len ([type], optional): maximum output seq length, in seconds for raw wav, in frame numbers for feature data. Defaults to float('inf'). min_input_len (float, optional): minimum input seq length, in seconds for raw wav, in frame numbers for feature data. Defaults to 0.0. max_output_len (float, optional): maximum input seq length, in modeling units. Defaults to 500.0. min_output_len (float, optional): minimum input seq length, in modeling units. Defaults to 0.0. max_output_input_ratio (float, optional): maximum output seq length/output seq length ratio. Defaults to 10.0. min_output_input_ratio (float, optional): minimum output seq length/output seq length ratio. Defaults to 0.05. """ super().__init__() # read manifest self._manifest = read_manifest( manifest_path=manifest_path, max_input_len=max_input_len, min_input_len=min_input_len, max_output_len=max_output_len, min_output_len=min_output_len, max_output_input_ratio=max_output_input_ratio, min_output_input_ratio=min_output_input_ratio) self._manifest.sort(key=lambda x: x["feat_shape"][0]) def __len__(self): return len(self._manifest) def __getitem__(self, idx): instance = self._manifest[idx] return instance["utt"], instance["feat"], instance["text"] class TripletManifestDataset(ManifestDataset): """ For Joint Training of Speech Translation and ASR. text: translation, text1: transcript. """ def __getitem__(self, idx): instance = self._manifest[idx] return instance["utt"], instance["feat"], instance["text"], instance[ "text1"] class TransformDataset(Dataset): """Transform Dataset. Args: data: list object from make_batchset transfrom: transform function """ def __init__(self, data, transform): """Init function.""" super().__init__() self.data = data self.transform = transform def __len__(self): """Len function.""" return len(self.data) def __getitem__(self, idx): """[] operator.""" return self.transform(self.data[idx])