# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from pathlib import Path from paddle import distributed as dist from paddle.io import DataLoader from paddle.nn import Layer from paddle.optimizer import Optimizer from paddlespeech.t2s.modules.losses import MLMLoss from paddlespeech.t2s.training.extensions.evaluator import StandardEvaluator from paddlespeech.t2s.training.reporter import report from paddlespeech.t2s.training.updaters.standard_updater import StandardUpdater logging.basicConfig( format='%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s', datefmt='[%Y-%m-%d %H:%M:%S]') logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) class ErnieSATUpdater(StandardUpdater): def __init__(self, model: Layer, optimizer: Optimizer, dataloader: DataLoader, init_state=None, text_masking: bool=False, odim: int=80, output_dir: Path=None): super().__init__(model, optimizer, dataloader, init_state=None) self.criterion = MLMLoss(text_masking=text_masking, odim=odim) log_file = output_dir / 'worker_{}.log'.format(dist.get_rank()) self.filehandler = logging.FileHandler(str(log_file)) logger.addHandler(self.filehandler) self.logger = logger self.msg = "" def update_core(self, batch): self.msg = "Rank: {}, ".format(dist.get_rank()) losses_dict = {} before_outs, after_outs, text_outs = self.model( speech=batch["speech"], text=batch["text"], masked_pos=batch["masked_pos"], speech_mask=batch["speech_mask"], text_mask=batch["text_mask"], speech_seg_pos=batch["speech_seg_pos"], text_seg_pos=batch["text_seg_pos"]) mlm_loss, text_mlm_loss = self.criterion( speech=batch["speech"], before_outs=before_outs, after_outs=after_outs, masked_pos=batch["masked_pos"], text=batch["text"], # maybe None text_outs=text_outs, # maybe None text_masked_pos=batch["text_masked_pos"]) loss = mlm_loss + text_mlm_loss if text_mlm_loss is not None else mlm_loss optimizer = self.optimizer optimizer.clear_grad() loss.backward() optimizer.step() report("train/loss", float(loss)) report("train/mlm_loss", float(mlm_loss)) if text_mlm_loss is not None: report("train/text_mlm_loss", float(text_mlm_loss)) losses_dict["text_mlm_loss"] = float(text_mlm_loss) losses_dict["mlm_loss"] = float(mlm_loss) losses_dict["loss"] = float(loss) self.msg += ', '.join('{}: {:>.6f}'.format(k, v) for k, v in losses_dict.items()) class ErnieSATEvaluator(StandardEvaluator): def __init__(self, model: Layer, dataloader: DataLoader, text_masking: bool=False, odim: int=80, output_dir: Path=None): super().__init__(model, dataloader) log_file = output_dir / 'worker_{}.log'.format(dist.get_rank()) self.filehandler = logging.FileHandler(str(log_file)) logger.addHandler(self.filehandler) self.logger = logger self.msg = "" self.criterion = MLMLoss(text_masking=text_masking, odim=odim) def evaluate_core(self, batch): self.msg = "Evaluate: " losses_dict = {} before_outs, after_outs, text_outs = self.model( speech=batch["speech"], text=batch["text"], masked_pos=batch["masked_pos"], speech_mask=batch["speech_mask"], text_mask=batch["text_mask"], speech_seg_pos=batch["speech_seg_pos"], text_seg_pos=batch["text_seg_pos"]) mlm_loss, text_mlm_loss = self.criterion( speech=batch["speech"], before_outs=before_outs, after_outs=after_outs, masked_pos=batch["masked_pos"], text=batch["text"], # maybe None text_outs=text_outs, # maybe None text_masked_pos=batch["text_masked_pos"]) loss = mlm_loss + text_mlm_loss if text_mlm_loss is not None else mlm_loss report("eval/loss", float(loss)) report("eval/mlm_loss", float(mlm_loss)) if text_mlm_loss is not None: report("eval/text_mlm_loss", float(text_mlm_loss)) losses_dict["text_mlm_loss"] = float(text_mlm_loss) losses_dict["mlm_loss"] = float(mlm_loss) losses_dict["loss"] = float(loss) self.msg += ', '.join('{}: {:>.6f}'.format(k, v) for k, v in losses_dict.items()) self.logger.info(self.msg)