#! /usr/bin/env bash cd ../.. > /dev/null # download language model cd models/lm > /dev/null sh download_lm_en.sh if [ $? -ne 0 ]; then exit 1 fi cd - > /dev/null # download well-trained model cd models/librispeech > /dev/null sh download_model.sh if [ $? -ne 0 ]; then exit 1 fi cd - > /dev/null # evaluate model CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \ python -u test.py \ --batch_size=128 \ --trainer_count=8 \ --beam_size=500 \ --num_proc_bsearch=8 \ --num_proc_data=8 \ --num_conv_layers=2 \ --num_rnn_layers=3 \ --rnn_layer_size=2048 \ --alpha=2.5 \ --beta=0.3 \ --cutoff_prob=1.0 \ --cutoff_top_n=40 \ --use_gru=False \ --use_gpu=True \ --share_rnn_weights=True \ --test_manifest='data/librispeech/manifest.test-clean' \ --mean_std_path='models/librispeech/mean_std.npz' \ --vocab_path='models/librispeech/vocab.txt' \ --model_path='models/librispeech/params.tar.gz' \ --lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm' \ --decoding_method='ctc_beam_search' \ --error_rate_type='wer' \ --specgram_type='linear' if [ $? -ne 0 ]; then echo "Failed in evaluation!" exit 1 fi exit 0