# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import urllib.request import librosa import numpy as np import paddle import paddleaudio import torch import torchaudio wav_url = 'https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav' if not os.path.isfile(os.path.basename(wav_url)): urllib.request.urlretrieve(wav_url, os.path.basename(wav_url)) waveform, sr = paddleaudio.load(os.path.abspath(os.path.basename(wav_url))) waveform_tensor = paddle.to_tensor(waveform).unsqueeze(0) waveform_tensor_torch = torch.from_numpy(waveform).unsqueeze(0) # Feature conf mel_conf = { 'sr': sr, 'n_fft': 512, 'hop_length': 128, 'n_mels': 40, } mel_conf_torchaudio = { 'sample_rate': sr, 'n_fft': 512, 'hop_length': 128, 'n_mels': 40, 'norm': 'slaney', 'mel_scale': 'slaney', } def enable_cpu_device(): paddle.set_device('cpu') def enable_gpu_device(): paddle.set_device('gpu') log_mel_extractor = paddleaudio.features.LogMelSpectrogram( **mel_conf, f_min=0.0, top_db=80.0, dtype=waveform_tensor.dtype) def log_melspectrogram(): return log_mel_extractor(waveform_tensor).squeeze(0) def test_log_melspect_cpu(benchmark): enable_cpu_device() feature_paddleaudio = benchmark(log_melspectrogram) feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf) feature_librosa = librosa.power_to_db(feature_librosa, top_db=80.0) np.testing.assert_array_almost_equal( feature_librosa, feature_paddleaudio, decimal=3) def test_log_melspect_gpu(benchmark): enable_gpu_device() feature_paddleaudio = benchmark(log_melspectrogram) feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf) feature_librosa = librosa.power_to_db(feature_librosa, top_db=80.0) np.testing.assert_array_almost_equal( feature_librosa, feature_paddleaudio, decimal=2) mel_extractor_torchaudio = torchaudio.transforms.MelSpectrogram( **mel_conf_torchaudio, f_min=0.0) amplitude_to_DB = torchaudio.transforms.AmplitudeToDB('power', top_db=80.0) def melspectrogram_torchaudio(): return mel_extractor_torchaudio(waveform_tensor_torch).squeeze(0) def log_melspectrogram_torchaudio(): mel_specgram = mel_extractor_torchaudio(waveform_tensor_torch) return amplitude_to_DB(mel_specgram).squeeze(0) def test_log_melspect_cpu_torchaudio(benchmark): global waveform_tensor_torch, mel_extractor_torchaudio, amplitude_to_DB mel_extractor_torchaudio = mel_extractor_torchaudio.to('cpu') waveform_tensor_torch = waveform_tensor_torch.to('cpu') amplitude_to_DB = amplitude_to_DB.to('cpu') feature_paddleaudio = benchmark(log_melspectrogram_torchaudio) feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf) feature_librosa = librosa.power_to_db(feature_librosa, top_db=80.0) np.testing.assert_array_almost_equal( feature_librosa, feature_paddleaudio, decimal=3) def test_log_melspect_gpu_torchaudio(benchmark): global waveform_tensor_torch, mel_extractor_torchaudio, amplitude_to_DB mel_extractor_torchaudio = mel_extractor_torchaudio.to('cuda') waveform_tensor_torch = waveform_tensor_torch.to('cuda') amplitude_to_DB = amplitude_to_DB.to('cuda') feature_torchaudio = benchmark(log_melspectrogram_torchaudio) feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf) feature_librosa = librosa.power_to_db(feature_librosa, top_db=80.0) np.testing.assert_array_almost_equal( feature_librosa, feature_torchaudio.cpu(), decimal=2)