# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import os import time from typing import Optional import paddle from yacs.config import CfgNode from paddlespeech.cli.asr.infer import ASRExecutor from paddlespeech.cli.log import logger from paddlespeech.cli.utils import MODEL_HOME from paddlespeech.resource import CommonTaskResource from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer from paddlespeech.s2t.modules.ctc import CTCDecoder from paddlespeech.s2t.utils.utility import UpdateConfig from paddlespeech.server.engine.base_engine import BaseEngine from paddlespeech.server.utils.paddle_predictor import init_predictor from paddlespeech.server.utils.paddle_predictor import run_model __all__ = ['ASREngine', 'PaddleASRConnectionHandler'] class ASRServerExecutor(ASRExecutor): def __init__(self): super().__init__() self.task_resource = CommonTaskResource( task='asr', model_format='static') def _init_from_path(self, model_type: str='wenetspeech', am_model: Optional[os.PathLike]=None, am_params: Optional[os.PathLike]=None, lang: str='zh', sample_rate: int=16000, cfg_path: Optional[os.PathLike]=None, decode_method: str='attention_rescoring', am_predictor_conf: dict=None): """ Init model and other resources from a specific path. """ self.max_len = 50 sample_rate_str = '16k' if sample_rate == 16000 else '8k' tag = model_type + '-' + lang + '-' + sample_rate_str self.task_resource.set_task_model(model_tag=tag) if cfg_path is None or am_model is None or am_params is None: self.res_path = self.task_resource.res_dir self.cfg_path = os.path.join( self.res_path, self.task_resource.res_dict['cfg_path']) self.am_model = os.path.join(self.res_path, self.task_resource.res_dict['model']) self.am_params = os.path.join(self.res_path, self.task_resource.res_dict['params']) logger.info(self.res_path) logger.info(self.cfg_path) logger.info(self.am_model) logger.info(self.am_params) else: self.cfg_path = os.path.abspath(cfg_path) self.am_model = os.path.abspath(am_model) self.am_params = os.path.abspath(am_params) self.res_path = os.path.dirname( os.path.dirname(os.path.abspath(self.cfg_path))) #Init body. self.config = CfgNode(new_allowed=True) self.config.merge_from_file(self.cfg_path) with UpdateConfig(self.config): if "deepspeech2online" in model_type or "deepspeech2offline" in model_type: from paddlespeech.s2t.io.collator import SpeechCollator self.vocab = self.config.vocab_filepath self.config.decode.lang_model_path = os.path.join( MODEL_HOME, 'language_model', self.config.decode.lang_model_path) self.collate_fn_test = SpeechCollator.from_config(self.config) self.text_feature = TextFeaturizer( unit_type=self.config.unit_type, vocab=self.vocab) lm_url = self.task_resource.res_dict['lm_url'] lm_md5 = self.task_resource.res_dict['lm_md5'] self.download_lm( lm_url, os.path.dirname(self.config.decode.lang_model_path), lm_md5) elif "conformer" in model_type or "transformer" in model_type or "wenetspeech" in model_type: raise Exception("wrong type") else: raise Exception("wrong type") # AM predictor self.am_predictor_conf = am_predictor_conf self.am_predictor = init_predictor( model_file=self.am_model, params_file=self.am_params, predictor_conf=self.am_predictor_conf) # decoder self.decoder = CTCDecoder( odim=self.config.output_dim, # is in vocab enc_n_units=self.config.rnn_layer_size * 2, blank_id=self.config.blank_id, dropout_rate=0.0, reduction=True, # sum batch_average=True, # sum / batch_size grad_norm_type=self.config.get('ctc_grad_norm_type', None)) @paddle.no_grad() def infer(self, model_type: str): """ Model inference and result stored in self.output. """ cfg = self.config.decode audio = self._inputs["audio"] audio_len = self._inputs["audio_len"] if "deepspeech2online" in model_type or "deepspeech2offline" in model_type: decode_batch_size = audio.shape[0] # init once self.decoder.init_decoder( decode_batch_size, self.text_feature.vocab_list, cfg.decoding_method, cfg.lang_model_path, cfg.alpha, cfg.beta, cfg.beam_size, cfg.cutoff_prob, cfg.cutoff_top_n, cfg.num_proc_bsearch) output_data = run_model(self.am_predictor, [audio.numpy(), audio_len.numpy()]) probs = output_data[0] eouts_len = output_data[1] batch_size = probs.shape[0] self.decoder.reset_decoder(batch_size=batch_size) self.decoder.next(probs, eouts_len) trans_best, trans_beam = self.decoder.decode() # self.model.decoder.del_decoder() self._outputs["result"] = trans_best[0] elif "conformer" in model_type or "transformer" in model_type: raise Exception("invalid model name") else: raise Exception("invalid model name") class ASREngine(BaseEngine): """ASR server engine Args: metaclass: Defaults to Singleton. """ def __init__(self): super(ASREngine, self).__init__() def init(self, config: dict) -> bool: """init engine resource Args: config_file (str): config file Returns: bool: init failed or success """ self.executor = ASRServerExecutor() self.config = config self.engine_type = "inference" try: if self.config.am_predictor_conf.device is not None: self.device = self.config.am_predictor_conf.device else: self.device = paddle.get_device() paddle.set_device(self.device) except Exception as e: logger.error( "Set device failed, please check if device is already used and the parameter 'device' in the yaml file" ) logger.error(e) return False self.executor._init_from_path( model_type=self.config.model_type, am_model=self.config.am_model, am_params=self.config.am_params, lang=self.config.lang, sample_rate=self.config.sample_rate, cfg_path=self.config.cfg_path, decode_method=self.config.decode_method, am_predictor_conf=self.config.am_predictor_conf) logger.info("Initialize ASR server engine successfully.") return True class PaddleASRConnectionHandler(ASRServerExecutor): def __init__(self, asr_engine): """The PaddleSpeech ASR Server Connection Handler This connection process every asr server request Args: asr_engine (ASREngine): The ASR engine """ super().__init__() self.input = None self.output = None self.asr_engine = asr_engine self.executor = self.asr_engine.executor self.config = self.executor.config self.max_len = self.executor.max_len self.decoder = self.executor.decoder self.am_predictor = self.executor.am_predictor self.text_feature = self.executor.text_feature self.collate_fn_test = self.executor.collate_fn_test def run(self, audio_data): """engine run Args: audio_data (bytes): base64.b64decode """ if self._check( io.BytesIO(audio_data), self.asr_engine.config.sample_rate, self.asr_engine.config.force_yes): logger.info("start running asr engine") self.preprocess(self.asr_engine.config.model_type, io.BytesIO(audio_data)) st = time.time() self.infer(self.asr_engine.config.model_type) infer_time = time.time() - st self.output = self.postprocess() # Retrieve result of asr. logger.info("end inferring asr engine") else: logger.info("file check failed!") self.output = None logger.info("inference time: {}".format(infer_time)) logger.info("asr engine type: paddle inference")