import paddle import torch torch_model_dict = torch.load('large-v3-turbo.pt')['model_state_dict'] paddle_model_state_dict = {} for key, val in torch_model_dict.items(): if key.endswith( 'weight' ) and val.ndim == 2 and key != "decoder.token_embedding.weight": val = val.T paddle_model_state_dict[key] = paddle.to_tensor( val.cpu().numpy()).astype("float32") # add other params in case if need, such as: paddle_model_state_dict['dims'] = torch.load('large-v3-turbo.pt')['dims'] paddle.save(paddle_model_state_dict, 'weights.params')