# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains DeepSpeech2 and DeepSpeech2Online model.""" import time from collections import defaultdict from contextlib import nullcontext import numpy as np import paddle from paddle import distributed as dist from paddle.io import DataLoader from src_deepspeech2x.models.ds2 import DeepSpeech2InferModel from src_deepspeech2x.models.ds2 import DeepSpeech2Model from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer from paddlespeech.s2t.io.collator import SpeechCollator from paddlespeech.s2t.io.dataset import ManifestDataset from paddlespeech.s2t.io.sampler import SortagradBatchSampler from paddlespeech.s2t.io.sampler import SortagradDistributedBatchSampler from paddlespeech.s2t.models.ds2_online import DeepSpeech2InferModelOnline from paddlespeech.s2t.models.ds2_online import DeepSpeech2ModelOnline from paddlespeech.s2t.training.gradclip import ClipGradByGlobalNormWithLog from paddlespeech.s2t.training.trainer import Trainer from paddlespeech.s2t.utils import error_rate from paddlespeech.s2t.utils import layer_tools from paddlespeech.s2t.utils import mp_tools from paddlespeech.s2t.utils.log import Log logger = Log(__name__).getlog() class DeepSpeech2Trainer(Trainer): def __init__(self, config, args): super().__init__(config, args) def train_batch(self, batch_index, batch_data, msg): train_conf = self.config start = time.time() # forward utt, audio, audio_len, text, text_len = batch_data loss = self.model(audio, audio_len, text, text_len) losses_np = { 'train_loss': float(loss), } # loss backward if (batch_index + 1) % train_conf.accum_grad != 0: # Disable gradient synchronizations across DDP processes. # Within this context, gradients will be accumulated on module # variables, which will later be synchronized. context = self.model.no_sync else: # Used for single gpu training and DDP gradient synchronization # processes. context = nullcontext with context(): loss.backward() layer_tools.print_grads(self.model, print_func=None) # optimizer step if (batch_index + 1) % train_conf.accum_grad == 0: self.optimizer.step() self.optimizer.clear_grad() self.iteration += 1 iteration_time = time.time() - start msg += "train time: {:>.3f}s, ".format(iteration_time) msg += "batch size: {}, ".format(self.config.batch_size) msg += "accum: {}, ".format(train_conf.accum_grad) msg += ', '.join('{}: {:>.6f}'.format(k, v) for k, v in losses_np.items()) logger.info(msg) if dist.get_rank() == 0 and self.visualizer: for k, v in losses_np.items(): # `step -1` since we update `step` after optimizer.step(). self.visualizer.add_scalar("train/{}".format(k), v, self.iteration - 1) @paddle.no_grad() def valid(self): logger.info(f"Valid Total Examples: {len(self.valid_loader.dataset)}") self.model.eval() valid_losses = defaultdict(list) num_seen_utts = 1 total_loss = 0.0 for i, batch in enumerate(self.valid_loader): utt, audio, audio_len, text, text_len = batch loss = self.model(audio, audio_len, text, text_len) if paddle.isfinite(loss): num_utts = batch[1].shape[0] num_seen_utts += num_utts total_loss += float(loss) * num_utts valid_losses['val_loss'].append(float(loss)) if (i + 1) % self.config.log_interval == 0: valid_dump = {k: np.mean(v) for k, v in valid_losses.items()} valid_dump['val_history_loss'] = total_loss / num_seen_utts # logging msg = f"Valid: Rank: {dist.get_rank()}, " msg += "epoch: {}, ".format(self.epoch) msg += "step: {}, ".format(self.iteration) msg += "batch : {}/{}, ".format(i + 1, len(self.valid_loader)) msg += ', '.join('{}: {:>.6f}'.format(k, v) for k, v in valid_dump.items()) logger.info(msg) logger.info('Rank {} Val info val_loss {}'.format( dist.get_rank(), total_loss / num_seen_utts)) return total_loss, num_seen_utts def setup_model(self): config = self.config.clone() config.defrost() config.feat_size = self.train_loader.collate_fn.feature_size #config.dict_size = self.train_loader.collate_fn.vocab_size config.dict_size = len(self.train_loader.collate_fn.vocab_list) config.freeze() if self.args.model_type == 'offline': model = DeepSpeech2Model.from_config(config) elif self.args.model_type == 'online': model = DeepSpeech2ModelOnline.from_config(config) else: raise Exception("wrong model type") if self.parallel: model = paddle.DataParallel(model) logger.info(f"{model}") layer_tools.print_params(model, logger.info) grad_clip = ClipGradByGlobalNormWithLog(config.global_grad_clip) lr_scheduler = paddle.optimizer.lr.ExponentialDecay( learning_rate=config.lr, gamma=config.lr_decay, verbose=True) optimizer = paddle.optimizer.Adam( learning_rate=lr_scheduler, parameters=model.parameters(), weight_decay=paddle.regularizer.L2Decay(config.weight_decay), grad_clip=grad_clip) self.model = model self.optimizer = optimizer self.lr_scheduler = lr_scheduler logger.info("Setup model/optimizer/lr_scheduler!") def setup_dataloader(self): config = self.config.clone() config.defrost() config.keep_transcription_text = False config.manifest = config.train_manifest train_dataset = ManifestDataset.from_config(config) config.manifest = config.dev_manifest dev_dataset = ManifestDataset.from_config(config) config.manifest = config.test_manifest test_dataset = ManifestDataset.from_config(config) if self.parallel: batch_sampler = SortagradDistributedBatchSampler( train_dataset, batch_size=config.batch_size, num_replicas=None, rank=None, shuffle=True, drop_last=True, sortagrad=config.sortagrad, shuffle_method=config.shuffle_method) else: batch_sampler = SortagradBatchSampler( train_dataset, shuffle=True, batch_size=config.batch_size, drop_last=True, sortagrad=config.sortagrad, shuffle_method=config.shuffle_method) collate_fn_train = SpeechCollator.from_config(config) config.augmentation_config = "" collate_fn_dev = SpeechCollator.from_config(config) config.keep_transcription_text = True config.augmentation_config = "" collate_fn_test = SpeechCollator.from_config(config) self.train_loader = DataLoader( train_dataset, batch_sampler=batch_sampler, collate_fn=collate_fn_train, num_workers=config.num_workers) self.valid_loader = DataLoader( dev_dataset, batch_size=config.batch_size, shuffle=False, drop_last=False, collate_fn=collate_fn_dev) self.test_loader = DataLoader( test_dataset, batch_size=config.decode.decode_batch_size, shuffle=False, drop_last=False, collate_fn=collate_fn_test) if "<eos>" in self.test_loader.collate_fn.vocab_list: self.test_loader.collate_fn.vocab_list.remove("<eos>") if "<eos>" in self.valid_loader.collate_fn.vocab_list: self.valid_loader.collate_fn.vocab_list.remove("<eos>") if "<eos>" in self.train_loader.collate_fn.vocab_list: self.train_loader.collate_fn.vocab_list.remove("<eos>") logger.info("Setup train/valid/test Dataloader!") class DeepSpeech2Tester(DeepSpeech2Trainer): def __init__(self, config, args): self._text_featurizer = TextFeaturizer( unit_type=config.unit_type, vocab=None) super().__init__(config, args) def ordid2token(self, texts, texts_len): """ ord() id to chr() chr """ trans = [] for text, n in zip(texts, texts_len): n = n.numpy().item() ids = text[:n] trans.append(''.join([chr(i) for i in ids])) return trans def compute_metrics(self, utts, audio, audio_len, texts, texts_len, fout=None): cfg = self.config.decode errors_sum, len_refs, num_ins = 0.0, 0, 0 errors_func = error_rate.char_errors if cfg.error_rate_type == 'cer' else error_rate.word_errors error_rate_func = error_rate.cer if cfg.error_rate_type == 'cer' else error_rate.wer target_transcripts = self.ordid2token(texts, texts_len) result_transcripts = self.compute_result_transcripts(audio, audio_len) for utt, target, result in zip(utts, target_transcripts, result_transcripts): errors, len_ref = errors_func(target, result) errors_sum += errors len_refs += len_ref num_ins += 1 if fout: fout.write(utt + " " + result + "\n") logger.info("\nTarget Transcription: %s\nOutput Transcription: %s" % (target, result)) logger.info("Current error rate [%s] = %f" % (cfg.error_rate_type, error_rate_func(target, result))) return dict( errors_sum=errors_sum, len_refs=len_refs, num_ins=num_ins, error_rate=errors_sum / len_refs, error_rate_type=cfg.error_rate_type) def compute_result_transcripts(self, audio, audio_len): result_transcripts = self.model.decode(audio, audio_len) result_transcripts = [ self._text_featurizer.detokenize(item) for item in result_transcripts ] return result_transcripts @mp_tools.rank_zero_only @paddle.no_grad() def test(self): logger.info(f"Test Total Examples: {len(self.test_loader.dataset)}") self.model.eval() cfg = self.config error_rate_type = None errors_sum, len_refs, num_ins = 0.0, 0, 0 # Initialized the decoder in model decode_cfg = self.config.decode vocab_list = self.test_loader.collate_fn.vocab_list decode_batch_size = self.test_loader.batch_size self.model.decoder.init_decoder( decode_batch_size, vocab_list, decode_cfg.decoding_method, decode_cfg.lang_model_path, decode_cfg.alpha, decode_cfg.beta, decode_cfg.beam_size, decode_cfg.cutoff_prob, decode_cfg.cutoff_top_n, decode_cfg.num_proc_bsearch) with open(self.args.result_file, 'w') as fout: for i, batch in enumerate(self.test_loader): utts, audio, audio_len, texts, texts_len = batch metrics = self.compute_metrics(utts, audio, audio_len, texts, texts_len, fout) errors_sum += metrics['errors_sum'] len_refs += metrics['len_refs'] num_ins += metrics['num_ins'] error_rate_type = metrics['error_rate_type'] logger.info("Error rate [%s] (%d/?) = %f" % (error_rate_type, num_ins, errors_sum / len_refs)) # logging msg = "Test: " msg += "epoch: {}, ".format(self.epoch) msg += "step: {}, ".format(self.iteration) msg += "Final error rate [%s] (%d/%d) = %f" % ( error_rate_type, num_ins, num_ins, errors_sum / len_refs) logger.info(msg) self.model.decoder.del_decoder() def run_test(self): self.resume_or_scratch() try: self.test() except KeyboardInterrupt: exit(-1) def export(self): if self.args.model_type == 'offline': infer_model = DeepSpeech2InferModel.from_pretrained( self.test_loader, self.config, self.args.checkpoint_path) elif self.args.model_type == 'online': infer_model = DeepSpeech2InferModelOnline.from_pretrained( self.test_loader, self.config, self.args.checkpoint_path) else: raise Exception("wrong model type") infer_model.eval() feat_dim = self.test_loader.collate_fn.feature_size static_model = infer_model.export() logger.info(f"Export code: {static_model.forward.code}") paddle.jit.save(static_model, self.args.export_path) def run_export(self): try: self.export() except KeyboardInterrupt: exit(-1)