# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import jsonlines import numpy as np from tqdm import tqdm from paddlespeech.t2s.datasets.data_table import DataTable def get_minmax(spec, min_spec, max_spec): # spec: [T, 80] for i in range(spec.shape[1]): min_value = np.min(spec[:, i]) max_value = np.max(spec[:, i]) min_spec[i] = min(min_value, min_spec[i]) max_spec[i] = max(max_value, max_spec[i]) return min_spec, max_spec def main(): """Run preprocessing process.""" parser = argparse.ArgumentParser( description="Normalize dumped raw features (See detail in parallel_wavegan/bin/normalize.py)." ) parser.add_argument( "--metadata", type=str, required=True, help="directory including feature files to be normalized. " "you need to specify either *-scp or rootdir.") parser.add_argument( "--speech-stretchs", type=str, required=True, help="min max spec file. only computer on train data") args = parser.parse_args() # get dataset with jsonlines.open(args.metadata, 'r') as reader: metadata = list(reader) dataset = DataTable( metadata, converters={ "speech": np.load, }) logging.info(f"The number of files = {len(dataset)}.") n_mel = 80 min_spec = 100.0 * np.ones(shape=(n_mel), dtype=np.float32) max_spec = -100.0 * np.ones(shape=(n_mel), dtype=np.float32) for item in tqdm(dataset): spec = item['speech'] min_spec, max_spec = get_minmax(spec, min_spec, max_spec) # Using min_spec=-6.0 training effect is better so far min_spec = -6.0 * np.ones(shape=(n_mel), dtype=np.float32) min_max_spec = np.stack([min_spec, max_spec], axis=0) np.save( str(args.speech_stretchs), min_max_spec.astype(np.float32), allow_pickle=False) if __name__ == "__main__": main()