# This configuration tested on 4 GPUs (V100) with 32GB GPU # memory. It takes around 2 weeks to finish the training # but 100k iters model should generate reasonable results. ########################################################### # FEATURE EXTRACTION SETTING # ########################################################### fs: 22050 # sr n_fft: 1024 # FFT size (samples). n_shift: 256 # Hop size (samples). 12.5ms win_length: null # Window length (samples). 50ms # If set to null, it will be the same as fft_size. window: "hann" # Window function. ########################################################## # TTS MODEL SETTING # ########################################################## model: # generator related generator_type: vits_generator generator_params: hidden_channels: 192 spks: -1 global_channels: -1 segment_size: 32 text_encoder_attention_heads: 2 text_encoder_ffn_expand: 4 text_encoder_blocks: 6 text_encoder_positionwise_layer_type: "conv1d" text_encoder_positionwise_conv_kernel_size: 3 text_encoder_positional_encoding_layer_type: "rel_pos" text_encoder_self_attention_layer_type: "rel_selfattn" text_encoder_activation_type: "swish" text_encoder_normalize_before: True text_encoder_dropout_rate: 0.1 text_encoder_positional_dropout_rate: 0.0 text_encoder_attention_dropout_rate: 0.1 use_macaron_style_in_text_encoder: True use_conformer_conv_in_text_encoder: False text_encoder_conformer_kernel_size: -1 decoder_kernel_size: 7 decoder_channels: 512 decoder_upsample_scales: [8, 8, 2, 2] decoder_upsample_kernel_sizes: [16, 16, 4, 4] decoder_resblock_kernel_sizes: [3, 7, 11] decoder_resblock_dilations: [[1, 3, 5], [1, 3, 5], [1, 3, 5]] use_weight_norm_in_decoder: True posterior_encoder_kernel_size: 5 posterior_encoder_layers: 16 posterior_encoder_stacks: 1 posterior_encoder_base_dilation: 1 posterior_encoder_dropout_rate: 0.0 use_weight_norm_in_posterior_encoder: True flow_flows: 4 flow_kernel_size: 5 flow_base_dilation: 1 flow_layers: 4 flow_dropout_rate: 0.0 use_weight_norm_in_flow: True use_only_mean_in_flow: True stochastic_duration_predictor_kernel_size: 3 stochastic_duration_predictor_dropout_rate: 0.5 stochastic_duration_predictor_flows: 4 stochastic_duration_predictor_dds_conv_layers: 3 # discriminator related discriminator_type: hifigan_multi_scale_multi_period_discriminator discriminator_params: scales: 1 scale_downsample_pooling: "AvgPool1D" scale_downsample_pooling_params: kernel_size: 4 stride: 2 padding: 2 scale_discriminator_params: in_channels: 1 out_channels: 1 kernel_sizes: [15, 41, 5, 3] channels: 128 max_downsample_channels: 1024 max_groups: 16 bias: True downsample_scales: [2, 2, 4, 4, 1] nonlinear_activation: "leakyrelu" nonlinear_activation_params: negative_slope: 0.1 use_weight_norm: True use_spectral_norm: False follow_official_norm: False periods: [2, 3, 5, 7, 11] period_discriminator_params: in_channels: 1 out_channels: 1 kernel_sizes: [5, 3] channels: 32 downsample_scales: [3, 3, 3, 3, 1] max_downsample_channels: 1024 bias: True nonlinear_activation: "leakyrelu" nonlinear_activation_params: negative_slope: 0.1 use_weight_norm: True use_spectral_norm: False # others sampling_rate: 22050 # needed in the inference for saving wav cache_generator_outputs: True # whether to cache generator outputs in the training ########################################################### # LOSS SETTING # ########################################################### # loss function related generator_adv_loss_params: average_by_discriminators: False # whether to average loss value by #discriminators loss_type: mse # loss type, "mse" or "hinge" discriminator_adv_loss_params: average_by_discriminators: False # whether to average loss value by #discriminators loss_type: mse # loss type, "mse" or "hinge" feat_match_loss_params: average_by_discriminators: False # whether to average loss value by #discriminators average_by_layers: False # whether to average loss value by #layers of each discriminator include_final_outputs: True # whether to include final outputs for loss calculation mel_loss_params: fs: 22050 # must be the same as the training data fft_size: 1024 # fft points hop_size: 256 # hop size win_length: null # window length window: hann # window type num_mels: 80 # number of Mel basis fmin: 0 # minimum frequency for Mel basis fmax: null # maximum frequency for Mel basis log_base: null # null represent natural log ########################################################### # ADVERSARIAL LOSS SETTING # ########################################################### lambda_adv: 1.0 # loss scaling coefficient for adversarial loss lambda_mel: 45.0 # loss scaling coefficient for Mel loss lambda_feat_match: 2.0 # loss scaling coefficient for feat match loss lambda_dur: 1.0 # loss scaling coefficient for duration loss lambda_kl: 1.0 # loss scaling coefficient for KL divergence loss # others sampling_rate: 22050 # needed in the inference for saving wav cache_generator_outputs: True # whether to cache generator outputs in the training ########################################################### # DATA LOADER SETTING # ########################################################### batch_size: 64 # Batch size. num_workers: 4 # Number of workers in DataLoader. ########################################################## # OPTIMIZER & SCHEDULER SETTING # ########################################################## # optimizer setting for generator generator_optimizer_params: beta1: 0.8 beta2: 0.99 epsilon: 1.0e-9 weight_decay: 0.0 generator_scheduler: exponential_decay generator_scheduler_params: learning_rate: 2.0e-4 gamma: 0.999875 # optimizer setting for discriminator discriminator_optimizer_params: beta1: 0.8 beta2: 0.99 epsilon: 1.0e-9 weight_decay: 0.0 discriminator_scheduler: exponential_decay discriminator_scheduler_params: learning_rate: 2.0e-4 gamma: 0.999875 generator_first: False # whether to start updating generator first ########################################################## # OTHER TRAINING SETTING # ########################################################## max_epoch: 1000 # number of epochs num_snapshots: 10 # max number of snapshots to keep while training seed: 777 # random seed number