// util/stl-utils.h // Copyright 2009-2011 Microsoft Corporation; Saarland University // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_UTIL_STL_UTILS_H_ #define KALDI_UTIL_STL_UTILS_H_ #include <unordered_map> #include <unordered_set> using std::unordered_map; using std::unordered_set; #include <algorithm> #include <map> #include <set> #include <string> #include <vector> #include "base/kaldi-common.h" namespace kaldi { /// Sorts and uniq's (removes duplicates) from a vector. template<typename T> inline void SortAndUniq(std::vector<T> *vec) { std::sort(vec->begin(), vec->end()); vec->erase(std::unique(vec->begin(), vec->end()), vec->end()); } /// Returns true if the vector is sorted. template<typename T> inline bool IsSorted(const std::vector<T> &vec) { typename std::vector<T>::const_iterator iter = vec.begin(), end = vec.end(); if (iter == end) return true; while (1) { typename std::vector<T>::const_iterator next_iter = iter; ++next_iter; if (next_iter == end) return true; // end of loop and nothing out of order if (*next_iter < *iter) return false; iter = next_iter; } } /// Returns true if the vector is sorted and contains each element /// only once. template<typename T> inline bool IsSortedAndUniq(const std::vector<T> &vec) { typename std::vector<T>::const_iterator iter = vec.begin(), end = vec.end(); if (iter == end) return true; while (1) { typename std::vector<T>::const_iterator next_iter = iter; ++next_iter; if (next_iter == end) return true; // end of loop and nothing out of order if (*next_iter <= *iter) return false; iter = next_iter; } } /// Removes duplicate elements from a sorted list. template<typename T> inline void Uniq(std::vector<T> *vec) { // must be already sorted. KALDI_PARANOID_ASSERT(IsSorted(*vec)); KALDI_ASSERT(vec); vec->erase(std::unique(vec->begin(), vec->end()), vec->end()); } /// Copies the elements of a set to a vector. template<class T> void CopySetToVector(const std::set<T> &s, std::vector<T> *v) { // copies members of s into v, in sorted order from lowest to highest // (because the set was in sorted order). KALDI_ASSERT(v != NULL); v->resize(s.size()); typename std::set<T>::const_iterator siter = s.begin(), send = s.end(); typename std::vector<T>::iterator viter = v->begin(); for (; siter != send; ++siter, ++viter) { *viter = *siter; } } template<class T> void CopySetToVector(const unordered_set<T> &s, std::vector<T> *v) { KALDI_ASSERT(v != NULL); v->resize(s.size()); typename unordered_set<T>::const_iterator siter = s.begin(), send = s.end(); typename std::vector<T>::iterator viter = v->begin(); for (; siter != send; ++siter, ++viter) { *viter = *siter; } } /// Copies the (key, value) pairs in a map to a vector of pairs. template<class A, class B> void CopyMapToVector(const std::map<A, B> &m, std::vector<std::pair<A, B> > *v) { KALDI_ASSERT(v != NULL); v->resize(m.size()); typename std::map<A, B>::const_iterator miter = m.begin(), mend = m.end(); typename std::vector<std::pair<A, B> >::iterator viter = v->begin(); for (; miter != mend; ++miter, ++viter) { *viter = std::make_pair(miter->first, miter->second); // do it like this because of const casting. } } /// Copies the keys in a map to a vector. template<class A, class B> void CopyMapKeysToVector(const std::map<A, B> &m, std::vector<A> *v) { KALDI_ASSERT(v != NULL); v->resize(m.size()); typename std::map<A, B>::const_iterator miter = m.begin(), mend = m.end(); typename std::vector<A>::iterator viter = v->begin(); for (; miter != mend; ++miter, ++viter) { *viter = miter->first; } } /// Copies the values in a map to a vector. template<class A, class B> void CopyMapValuesToVector(const std::map<A, B> &m, std::vector<B> *v) { KALDI_ASSERT(v != NULL); v->resize(m.size()); typename std::map<A, B>::const_iterator miter = m.begin(), mend = m.end(); typename std::vector<B>::iterator viter = v->begin(); for (; miter != mend; ++miter, ++viter) { *viter = miter->second; } } /// Copies the keys in a map to a set. template<class A, class B> void CopyMapKeysToSet(const std::map<A, B> &m, std::set<A> *s) { KALDI_ASSERT(s != NULL); s->clear(); typename std::map<A, B>::const_iterator miter = m.begin(), mend = m.end(); for (; miter != mend; ++miter) { s->insert(s->end(), miter->first); } } /// Copies the values in a map to a set. template<class A, class B> void CopyMapValuesToSet(const std::map<A, B> &m, std::set<B> *s) { KALDI_ASSERT(s != NULL); s->clear(); typename std::map<A, B>::const_iterator miter = m.begin(), mend = m.end(); for (; miter != mend; ++miter) s->insert(s->end(), miter->second); } /// Copies the contents of a vector to a set. template<class A> void CopyVectorToSet(const std::vector<A> &v, std::set<A> *s) { KALDI_ASSERT(s != NULL); s->clear(); typename std::vector<A>::const_iterator iter = v.begin(), end = v.end(); for (; iter != end; ++iter) s->insert(s->end(), *iter); // s->end() is a hint in case v was sorted. will work regardless. } /// Deletes any non-NULL pointers in the vector v, and sets /// the corresponding entries of v to NULL template<class A> void DeletePointers(std::vector<A*> *v) { KALDI_ASSERT(v != NULL); typename std::vector<A*>::iterator iter = v->begin(), end = v->end(); for (; iter != end; ++iter) { if (*iter != NULL) { delete *iter; *iter = NULL; // set to NULL for extra safety. } } } /// Returns true if the vector of pointers contains NULL pointers. template<class A> bool ContainsNullPointers(const std::vector<A*> &v) { typename std::vector<A*>::const_iterator iter = v.begin(), end = v.end(); for (; iter != end; ++iter) if (*iter == static_cast<A*> (NULL)) return true; return false; } /// Copies the contents a vector of one type to a vector /// of another type. template<typename A, typename B> void CopyVectorToVector(const std::vector<A> &vec_in, std::vector<B> *vec_out) { KALDI_ASSERT(vec_out != NULL); vec_out->resize(vec_in.size()); for (size_t i = 0; i < vec_in.size(); i++) (*vec_out)[i] = static_cast<B> (vec_in[i]); } /// A hashing function-object for vectors. template<typename Int> struct VectorHasher { // hashing function for vector<Int>. size_t operator()(const std::vector<Int> &x) const noexcept { size_t ans = 0; typename std::vector<Int>::const_iterator iter = x.begin(), end = x.end(); for (; iter != end; ++iter) { ans *= kPrime; ans += *iter; } return ans; } VectorHasher() { // Check we're instantiated with an integer type. KALDI_ASSERT_IS_INTEGER_TYPE(Int); } private: static const int kPrime = 7853; }; /// A hashing function-object for pairs of ints template<typename Int1, typename Int2 = Int1> struct PairHasher { // hashing function for pair<int> size_t operator()(const std::pair<Int1, Int2> &x) const noexcept { // 7853 was chosen at random from a list of primes. return x.first + x.second * 7853; } PairHasher() { // Check we're instantiated with an integer type. KALDI_ASSERT_IS_INTEGER_TYPE(Int1); KALDI_ASSERT_IS_INTEGER_TYPE(Int2); } }; /// A hashing function object for strings. struct StringHasher { // hashing function for std::string size_t operator()(const std::string &str) const noexcept { size_t ans = 0, len = str.length(); const char *c = str.c_str(), *end = c + len; for (; c != end; c++) { ans *= kPrime; ans += *c; } return ans; } private: static const int kPrime = 7853; }; /// Reverses the contents of a vector. template<typename T> inline void ReverseVector(std::vector<T> *vec) { KALDI_ASSERT(vec != NULL); size_t sz = vec->size(); for (size_t i = 0; i < sz/2; i++) std::swap( (*vec)[i], (*vec)[sz-1-i]); } /// Comparator object for pairs that compares only the first pair. template<class A, class B> struct CompareFirstMemberOfPair { inline bool operator() (const std::pair<A, B> &p1, const std::pair<A, B> &p2) { return p1.first < p2.first; } }; /// For a vector of pair<I, F> where I is an integer and F a floating-point or /// integer type, this function sorts a vector of type vector<pair<I, F> > on /// the I value and then merges elements with equal I values, summing these over /// the F component and then removing any F component with zero value. This /// is for where the vector of pairs represents a map from the integer to float /// component, with an "adding" type of semantics for combining the elements. template<typename I, typename F> inline void MergePairVectorSumming(std::vector<std::pair<I, F> > *vec) { KALDI_ASSERT_IS_INTEGER_TYPE(I); CompareFirstMemberOfPair<I, F> c; std::sort(vec->begin(), vec->end(), c); // sort on 1st element. typename std::vector<std::pair<I, F> >::iterator out = vec->begin(), in = vec->begin(), end = vec->end(); // special case: while there is nothing to be changed, skip over // initial input (avoids unnecessary copying). while (in + 1 < end && in[0].first != in[1].first && in[0].second != 0.0) { in++; out++; } while (in < end) { // We reach this point only at the first element of // each stretch of identical .first elements. *out = *in; ++in; while (in < end && in->first == out->first) { out->second += in->second; // this is the merge operation. ++in; } if (out->second != static_cast<F>(0)) // Don't keep zero elements. out++; } vec->erase(out, end); } } // namespace kaldi #endif // KALDI_UTIL_STL_UTILS_H_