#!/bin/bash # usage bash prepare.sh MODE # FILENAME=$1 # MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer'] MODE=$1 # dataline=$(cat ${FILENAME}) # parser params IFS=$'\n' lines=(${dataline}) function func_parser_key(){ strs=$1 IFS=":" array=(${strs}) tmp=${array[0]} echo ${tmp} } function func_parser_value(){ strs=$1 IFS=":" array=(${strs}) tmp=${array[1]} echo ${tmp} } IFS=$'\n' # The training params model_name=$(func_parser_value "${lines[1]}") trainer_list=$(func_parser_value "${lines[14]}") # MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer'] if [ ${MODE} = "lite_train_infer" ];then # pretrain lite train data wget -nc -P ./pretrain_models/ https://paddlespeech.bj.bcebos.com/Parakeet/pwg_baker_ckpt_0.4.zip (cd ./pretrain_models && unzip pwg_baker_ckpt_0.4.zip) # download data rm -rf ./train_data/mini_BZNSYP wget -nc -P ./train_data/ https://paddlespeech.bj.bcebos.com/datasets/CE/speedyspeech_v0.5/mini_BZNSYP.tar.gz cd ./train_data/ && tar xzf mini_BZNSYP.tar.gz cd ../ elif [ ${MODE} = "whole_train_infer" ];then wget -nc -P ./pretrain_models/ https://paddlespeech.bj.bcebos.com/Parakeet/speedyspeech_nosil_baker_ckpt_0.5.zip wget -nc -P ./pretrain_models/ https://paddlespeech.bj.bcebos.com/Parakeet/pwg_baker_ckpt_0.4.zip (cd ./pretrain_models && unzip speedyspeech_nosil_baker_ckpt_0.5.zip && unzip pwg_baker_ckpt_0.4.zip) rm -rf ./train_data/processed_BZNSYP wget -nc -P ./train_data/ https://paddlespeech.bj.bcebos.com/datasets/CE/speedyspeech_v0.5/processed_BZNSYP.tar.gz cd ./train_data/ && tar xzf processed_BZNSYP.tar.gz cd ../ else # whole infer using paddle inference library wget -nc -P ./pretrain_models/ https://paddlespeech.bj.bcebos.com/Parakeet/speedyspeech_pwg_inference_0.5.zip (cd ./pretrain_models && unzip speedyspeech_pwg_inference_0.5.zip) fi