// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "frontend/audio/db_norm.h" #include "kaldi/feat/cmvn.h" #include "kaldi/util/kaldi-io.h" namespace ppspeech { using kaldi::BaseFloat; using kaldi::SubVector; using kaldi::Vector; using kaldi::VectorBase; using std::unique_ptr; using std::vector; DecibelNormalizer::DecibelNormalizer( const DecibelNormalizerOptions& opts, std::unique_ptr base_extractor) { base_extractor_ = std::move(base_extractor); opts_ = opts; dim_ = 1; } void DecibelNormalizer::Accept(const kaldi::VectorBase& waves) { base_extractor_->Accept(waves); } bool DecibelNormalizer::Read(kaldi::Vector* waves) { if (base_extractor_->Read(waves) == false || waves->Dim() == 0) { return false; } Compute(waves); return true; } bool DecibelNormalizer::Compute(VectorBase* waves) const { // calculate db rms BaseFloat rms_db = 0.0; BaseFloat mean_square = 0.0; BaseFloat gain = 0.0; BaseFloat wave_float_normlization = 1.0f / (std::pow(2, 16 - 1)); vector samples; samples.resize(waves->Dim()); for (size_t i = 0; i < samples.size(); ++i) { samples[i] = (*waves)(i); } // square for (auto& d : samples) { if (opts_.convert_int_float) { d = d * wave_float_normlization; } mean_square += d * d; } // mean mean_square /= samples.size(); rms_db = 10 * std::log10(mean_square); gain = opts_.target_db - rms_db; if (gain > opts_.max_gain_db) { LOG(ERROR) << "Unable to normalize segment to " << opts_.target_db << "dB," << "because the the probable gain have exceeds opts_.max_gain_db" << opts_.max_gain_db << "dB."; return false; } // Note that this is an in-place transformation. for (auto& item : samples) { // python item *= 10.0 ** (gain / 20.0) item *= std::pow(10.0, gain / 20.0); } std::memcpy( waves->Data(), samples.data(), sizeof(BaseFloat) * samples.size()); return true; } } // namespace ppspeech