/** * Copyright (c) 2022 Xiaomi Corporation (authors: Fangjun Kuang) * * See LICENSE for clarification regarding multiple authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef KALDI_NATIVE_FBANK_CSRC_RFFT_H_ #define KALDI_NATIVE_FBANK_CSRC_RFFT_H_ #include <memory> namespace knf { // n-point Real discrete Fourier transform // where n is a power of 2. n >= 2 // // R[k] = sum_j=0^n-1 in[j]*cos(2*pi*j*k/n), 0<=k<=n/2 // I[k] = sum_j=0^n-1 in[j]*sin(2*pi*j*k/n), 0<k<n/2 class Rfft { public: // @param n Number of fft bins. it should be a power of 2. explicit Rfft(int32_t n); ~Rfft(); /** @param in_out A 1-D array of size n. * On return: * in_out[0] = R[0] * in_out[1] = R[n/2] * for 1 < k < n/2, * in_out[2*k] = R[k] * in_out[2*k+1] = I[k] * */ void Compute(float *in_out); void Compute(double *in_out); private: class RfftImpl; std::unique_ptr<RfftImpl> impl_; }; } // namespace knf #endif // KALDI_NATIVE_FBANK_CSRC_RFFT_H_