# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import base64 import io import librosa import numpy as np import soundfile as sf from engine.base_engine import BaseEngine from scipy.io import wavfile from paddlespeech.cli.log import logger from paddlespeech.cli.tts.infer import TTSExecutor from utils.audio_process import change_speed from utils.config import get_config from utils.errors import ErrorCode from utils.exception import ServerBaseException __all__ = ['TTSEngine'] class TTSServerExecutor(TTSExecutor): def __init__(self): super().__init__() pass class TTSEngine(BaseEngine): """TTS server engine Args: metaclass: Defaults to Singleton. """ def __init__(self, name=None): """Initialize TTS server engine """ super(TTSEngine, self).__init__() def init(self, config_file: str) -> bool: self.executor = TTSServerExecutor() self.config_file = config_file self.config = get_config(config_file) self.executor._init_from_path( am=self.config.am, am_config=self.config.am_config, am_ckpt=self.config.am_ckpt, am_stat=self.config.am_stat, phones_dict=self.config.phones_dict, tones_dict=self.config.tones_dict, speaker_dict=self.config.speaker_dict, voc=self.config.voc, voc_config=self.config.voc_config, voc_ckpt=self.config.voc_ckpt, voc_stat=self.config.voc_stat, lang=self.config.lang) logger.info("Initialize TTS server engine successfully.") return True def postprocess(self, wav, original_fs: int, target_fs: int=16000, volume: float=1.0, speed: float=1.0, audio_path: str=None): """Post-processing operations, including speech, volume, sample rate, save audio file Args: wav (numpy(float)): Synthesized audio sample points original_fs (int): original audio sample rate target_fs (int): target audio sample rate volume (float): target volume speed (float): target speed Raises: ServerBaseException: Throws an exception if the change speed unsuccessfully. Returns: target_fs: target sample rate for synthesized audio. wav_base64: The base64 format of the synthesized audio. """ # transform sample_rate if target_fs == 0 or target_fs > original_fs: target_fs = original_fs wav_tar_fs = wav else: wav_tar_fs = librosa.resample( np.squeeze(wav), original_fs, target_fs) # transform volume wav_vol = wav_tar_fs * volume # transform speed try: # windows not support soxbindings wav_speed = change_speed(wav_vol, speed, target_fs) except: raise ServerBaseException( ErrorCode.SERVER_INTERNAL_ERR, "Can not install soxbindings on your system.") # wav to base64 buf = io.BytesIO() wavfile.write(buf, target_fs, wav_speed) base64_bytes = base64.b64encode(buf.read()) wav_base64 = base64_bytes.decode('utf-8') # save audio if audio_path is not None and audio_path.endswith(".wav"): sf.write(audio_path, wav_speed, target_fs) elif audio_path is not None and audio_path.endswith(".pcm"): wav_norm = wav_speed * (32767 / max(0.001, np.max(np.abs(wav_speed)))) with open(audio_path, "wb") as f: f.write(wav_norm.astype(np.int16)) return target_fs, wav_base64 def run(self, sentence: str, spk_id: int=0, speed: float=1.0, volume: float=1.0, sample_rate: int=0, save_path: str=None): """ run include inference and postprocess. Args: sentence (str): text to be synthesized spk_id (int, optional): speaker id for multi-speaker speech synthesis. Defaults to 0. speed (float, optional): speed. Defaults to 1.0. volume (float, optional): volume. Defaults to 1.0. sample_rate (int, optional): target sample rate for synthesized audio, 0 means the same as the model sampling rate. Defaults to 0. save_path (str, optional): The save path of the synthesized audio. None means do not save audio. Defaults to None. Raises: ServerBaseException: Throws an exception if tts inference unsuccessfully. ServerBaseException: Throws an exception if postprocess unsuccessfully. Returns: lang: model language target_sample_rate: target sample rate for synthesized audio. wav_base64: The base64 format of the synthesized audio. """ lang = self.config.lang try: self.executor.infer( text=sentence, lang=lang, am=self.config.am, spk_id=spk_id) except: raise ServerBaseException(ErrorCode.SERVER_INTERNAL_ERR, "tts infer failed.") try: target_sample_rate, wav_base64 = self.postprocess( wav=self.executor._outputs['wav'].numpy(), original_fs=self.executor.am_config.fs, target_fs=sample_rate, volume=volume, speed=speed, audio_path=save_path) except: raise ServerBaseException(ErrorCode.SERVER_INTERNAL_ERR, "tts postprocess failed.") return lang, target_sample_rate, wav_base64