# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # Copyright 2019 Mobvoi Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Modified from wenet(https://github.com/wenet-e2e/wenet) """Multi-Head Attention layer definition.""" import math from typing import Tuple import paddle from paddle import nn from paddle.nn import initializer as I from paddlespeech.s2t.modules.align import Linear from paddlespeech.s2t.utils.log import Log logger = Log(__name__).getlog() __all__ = ["MultiHeadedAttention", "RelPositionMultiHeadedAttention"] # Relative Positional Encodings # https://www.jianshu.com/p/c0608efcc26f # https://zhuanlan.zhihu.com/p/344604604 class MultiHeadedAttention(nn.Layer): """Multi-Head Attention layer.""" def __init__(self, n_head: int, n_feat: int, dropout_rate: float): """Construct an MultiHeadedAttention object. Args: n_head (int): The number of heads. n_feat (int): The number of features. dropout_rate (float): Dropout rate. """ super().__init__() assert n_feat % n_head == 0 # We assume d_v always equals d_k self.d_k = n_feat // n_head self.h = n_head self.linear_q = Linear(n_feat, n_feat) self.linear_k = Linear(n_feat, n_feat) self.linear_v = Linear(n_feat, n_feat) self.linear_out = Linear(n_feat, n_feat) self.dropout = nn.Dropout(p=dropout_rate) def forward_qkv(self, query: paddle.Tensor, key: paddle.Tensor, value: paddle.Tensor ) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]: """Transform query, key and value. Args: query (paddle.Tensor): Query tensor (#batch, time1, size). key (paddle.Tensor): Key tensor (#batch, time2, size). value (paddle.Tensor): Value tensor (#batch, time2, size). Returns: paddle.Tensor: Transformed query tensor, size (#batch, n_head, time1, d_k). paddle.Tensor: Transformed key tensor, size (#batch, n_head, time2, d_k). paddle.Tensor: Transformed value tensor, size (#batch, n_head, time2, d_k). """ n_batch = query.shape[0] q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k) k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k) v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k) q = q.transpose([0, 2, 1, 3]) # (batch, head, time1, d_k) k = k.transpose([0, 2, 1, 3]) # (batch, head, time2, d_k) v = v.transpose([0, 2, 1, 3]) # (batch, head, time2, d_k) return q, k, v def forward_attention( self, value: paddle.Tensor, scores: paddle.Tensor, mask: paddle.Tensor, ) -> paddle.Tensor: """Compute attention context vector. Args: value (paddle.Tensor): Transformed value, size (#batch, n_head, time2, d_k). scores (paddle.Tensor): Attention score, size (#batch, n_head, time1, time2). mask (paddle.Tensor): Mask, size (#batch, 1, time2) or (#batch, time1, time2), (0, 0, 0) means fake mask. Returns: paddle.Tensor: Transformed value (#batch, time1, d_model) weighted by the attention score (#batch, time1, time2). """ n_batch = value.shape[0] # When `if mask.size(2) > 0` be True: # 1. training. # 2. oonx(16/4, chunk_size/history_size), feed real cache and real mask for the 1st chunk. # When will `if mask.size(2) > 0` be False? # 1. onnx(16/-1, -1/-1, 16/0) # 2. jit (16/-1, -1/-1, 16/0, 16/4) if paddle.shape(mask)[2] > 0: # time2 > 0 mask = mask.unsqueeze(1).equal(0) # (batch, 1, *, time2) # for last chunk, time2 might be larger than scores.size(-1) mask = mask[:, :, :, :paddle.shape(scores)[-1]] scores = scores.masked_fill(mask, -float('inf')) attn = paddle.softmax( scores, axis=-1).masked_fill(mask, 0.0) # (batch, head, time1, time2) else: attn = paddle.softmax( scores, axis=-1) # (batch, head, time1, time2) p_attn = self.dropout(attn) x = paddle.matmul(p_attn, value) # (batch, head, time1, d_k) x = x.transpose([0, 2, 1, 3]).view(n_batch, -1, self.h * self.d_k) # (batch, time1, d_model) return self.linear_out(x) # (batch, time1, d_model) def forward(self, query: paddle.Tensor, key: paddle.Tensor, value: paddle.Tensor, mask: paddle.Tensor, pos_emb: paddle.Tensor, cache: paddle.Tensor) -> Tuple[paddle.Tensor, paddle.Tensor]: """Compute scaled dot product attention. Args: query (paddle.Tensor): Query tensor (#batch, time1, size). key (paddle.Tensor): Key tensor (#batch, time2, size). value (paddle.Tensor): Value tensor (#batch, time2, size). mask (paddle.Tensor): Mask tensor (#batch, 1, time2) or (#batch, time1, time2). 1.When applying cross attention between decoder and encoder, the batch padding mask for input is in (#batch, 1, T) shape. 2.When applying self attention of encoder, the mask is in (#batch, T, T) shape. 3.When applying self attention of decoder, the mask is in (#batch, L, L) shape. 4.If the different position in decoder see different block of the encoder, such as Mocha, the passed in mask could be in (#batch, L, T) shape. But there is no such case in current Wenet. cache (paddle.Tensor): Cache tensor (1, head, cache_t, d_k * 2), where `cache_t == chunk_size * num_decoding_left_chunks` and `head * d_k == size` Returns: paddle.Tensor: Output tensor (#batch, time1, d_model). paddle.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) where `cache_t == chunk_size * num_decoding_left_chunks` and `head * d_k == size` """ q, k, v = self.forward_qkv(query, key, value) # when export onnx model, for 1st chunk, we feed # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode) # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode). # In all modes, `if cache.size(0) > 0` will alwayse be `True` # and we will always do splitting and # concatnation(this will simplify onnx export). Note that # it's OK to concat & split zero-shaped tensors(see code below). # when export jit model, for 1st chunk, we always feed # cache(0, 0, 0, 0) since jit supports dynamic if-branch. # >>> a = torch.ones((1, 2, 0, 4)) # >>> b = torch.ones((1, 2, 3, 4)) # >>> c = torch.cat((a, b), dim=2) # >>> torch.equal(b, c) # True # >>> d = torch.split(a, 2, dim=-1) # >>> torch.equal(d[0], d[1]) # True if paddle.shape(cache)[0] > 0: # last dim `d_k * 2` for (key, val) key_cache, value_cache = paddle.split(cache, 2, axis=-1) k = paddle.concat([key_cache, k], axis=2) v = paddle.concat([value_cache, v], axis=2) # We do cache slicing in encoder.forward_chunk, since it's # non-trivial to calculate `next_cache_start` here. new_cache = paddle.concat((k, v), axis=-1) scores = paddle.matmul(q, k.transpose([0, 1, 3, 2])) / math.sqrt(self.d_k) return self.forward_attention(v, scores, mask), new_cache class RelPositionMultiHeadedAttention(MultiHeadedAttention): """Multi-Head Attention layer with relative position encoding.""" def __init__(self, n_head, n_feat, dropout_rate): """Construct an RelPositionMultiHeadedAttention object. Paper: https://arxiv.org/abs/1901.02860 Args: n_head (int): The number of heads. n_feat (int): The number of features. dropout_rate (float): Dropout rate. """ super().__init__(n_head, n_feat, dropout_rate) # linear transformation for positional encoding self.linear_pos = Linear(n_feat, n_feat, bias_attr=False) # these two learnable bias are used in matrix c and matrix d # as described in https://arxiv.org/abs/1901.02860 Section 3.3 #self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k)) #self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k)) #torch.nn.init.xavier_uniform_(self.pos_bias_u) #torch.nn.init.xavier_uniform_(self.pos_bias_v) pos_bias_u = self.create_parameter( [self.h, self.d_k], default_initializer=I.XavierUniform()) self.add_parameter('pos_bias_u', pos_bias_u) pos_bias_v = self.create_parameter( (self.h, self.d_k), default_initializer=I.XavierUniform()) self.add_parameter('pos_bias_v', pos_bias_v) def rel_shift(self, x, zero_triu: bool=False): """Compute relative positinal encoding. Args: x (paddle.Tensor): Input tensor (batch, head, time1, time1). zero_triu (bool): If true, return the lower triangular part of the matrix. Returns: paddle.Tensor: Output tensor. (batch, head, time1, time1) """ zero_pad = paddle.zeros( (x.shape[0], x.shape[1], x.shape[2], 1), dtype=x.dtype) x_padded = paddle.cat([zero_pad, x], dim=-1) x_padded = x_padded.view(x.shape[0], x.shape[1], x.shape[3] + 1, x.shape[2]) x = x_padded[:, :, 1:].view_as(x) # [B, H, T1, T1] if zero_triu: ones = paddle.ones((x.shape[2], x.shape[3])) x = x * paddle.tril(ones, x.shape[3] - x.shape[2])[None, None, :, :] return x def forward(self, query: paddle.Tensor, key: paddle.Tensor, value: paddle.Tensor, mask: paddle.Tensor, pos_emb: paddle.Tensor, cache: paddle.Tensor) -> Tuple[paddle.Tensor, paddle.Tensor]: """Compute 'Scaled Dot Product Attention' with rel. positional encoding. Args: query (paddle.Tensor): Query tensor (#batch, time1, size). key (paddle.Tensor): Key tensor (#batch, time2, size). value (paddle.Tensor): Value tensor (#batch, time2, size). mask (paddle.Tensor): Mask tensor (#batch, 1, time2) or (#batch, time1, time2), (0, 0, 0) means fake mask. pos_emb (paddle.Tensor): Positional embedding tensor (#batch, time2, size). cache (paddle.Tensor): Cache tensor (1, head, cache_t, d_k * 2), where `cache_t == chunk_size * num_decoding_left_chunks` and `head * d_k == size` Returns: paddle.Tensor: Output tensor (#batch, time1, d_model). paddle.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) where `cache_t == chunk_size * num_decoding_left_chunks` and `head * d_k == size` """ q, k, v = self.forward_qkv(query, key, value) q = q.transpose([0, 2, 1, 3]) # (batch, time1, head, d_k) # when export onnx model, for 1st chunk, we feed # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode) # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode). # In all modes, `if cache.size(0) > 0` will alwayse be `True` # and we will always do splitting and # concatnation(this will simplify onnx export). Note that # it's OK to concat & split zero-shaped tensors(see code below). # when export jit model, for 1st chunk, we always feed # cache(0, 0, 0, 0) since jit supports dynamic if-branch. # >>> a = torch.ones((1, 2, 0, 4)) # >>> b = torch.ones((1, 2, 3, 4)) # >>> c = torch.cat((a, b), dim=2) # >>> torch.equal(b, c) # True # >>> d = torch.split(a, 2, dim=-1) # >>> torch.equal(d[0], d[1]) # True if paddle.shape(cache)[0] > 0: # last dim `d_k * 2` for (key, val) key_cache, value_cache = paddle.split(cache, 2, axis=-1) k = paddle.concat([key_cache, k], axis=2) v = paddle.concat([value_cache, v], axis=2) # We do cache slicing in encoder.forward_chunk, since it's # non-trivial to calculate `next_cache_start` here. new_cache = paddle.concat((k, v), axis=-1) n_batch_pos = pos_emb.shape[0] p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k) p = p.transpose([0, 2, 1, 3]) # (batch, head, time1, d_k) # (batch, head, time1, d_k) q_with_bias_u = (q + self.pos_bias_u).transpose([0, 2, 1, 3]) # (batch, head, time1, d_k) q_with_bias_v = (q + self.pos_bias_v).transpose([0, 2, 1, 3]) # compute attention score # first compute matrix a and matrix c # as described in https://arxiv.org/abs/1901.02860 Section 3.3 # (batch, head, time1, time2) matrix_ac = paddle.matmul(q_with_bias_u, k.transpose([0, 1, 3, 2])) # compute matrix b and matrix d # (batch, head, time1, time2) matrix_bd = paddle.matmul(q_with_bias_v, p.transpose([0, 1, 3, 2])) # Remove rel_shift since it is useless in speech recognition, # and it requires special attention for streaming. # matrix_bd = self.rel_shift(matrix_bd) scores = (matrix_ac + matrix_bd) / math.sqrt( self.d_k) # (batch, head, time1, time2) return self.forward_attention(v, scores, mask), new_cache