// Copyright (c) 2020 Mobvoi Inc (Binbin Zhang, Di Wu) // 2022 Binbin Zhang (binbzha@qq.com) // Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "recognizer/recognizer_controller_impl.h" #include "decoder/ctc_prefix_beam_search_decoder.h" #include "common/utils/strings.h" namespace ppspeech { RecognizerControllerImpl::RecognizerControllerImpl(const RecognizerResource& resource) : opts_(resource) { BaseFloat am_scale = resource.acoustic_scale; BaseFloat blank_threshold = resource.blank_threshold; const FeaturePipelineOptions& feature_opts = resource.feature_pipeline_opts; std::shared_ptr feature_pipeline( new FeaturePipeline(feature_opts)); std::shared_ptr nnet; #ifndef USE_ONNX nnet = resource.nnet->Clone(); #else if (resource.model_opts.with_onnx_model){ nnet.reset(new U2OnnxNnet(resource.model_opts)); } else { nnet = resource.nnet->Clone(); } #endif nnet_producer_.reset(new NnetProducer(nnet, feature_pipeline, blank_threshold)); nnet_thread_ = std::thread(RunNnetEvaluation, this); decodable_.reset(new Decodable(nnet_producer_, am_scale)); if (resource.decoder_opts.tlg_decoder_opts.fst_path.empty()) { LOG(INFO) << "Init PrefixBeamSearch Decoder"; decoder_ = std::make_unique( resource.decoder_opts.ctc_prefix_search_opts); } else { LOG(INFO) << "Init TLGDecoder"; decoder_ = std::make_unique( resource.decoder_opts.tlg_decoder_opts); } symbol_table_ = decoder_->WordSymbolTable(); global_frame_offset_ = 0; input_finished_ = false; num_frames_ = 0; result_.clear(); } RecognizerControllerImpl::~RecognizerControllerImpl() { WaitFinished(); } void RecognizerControllerImpl::Reset() { nnet_producer_->Reset(); } void RecognizerControllerImpl::RunDecoder(RecognizerControllerImpl* me) { me->RunDecoderInternal(); } void RecognizerControllerImpl::RunDecoderInternal() { LOG(INFO) << "DecoderInternal begin"; while (!nnet_producer_->IsFinished()) { nnet_condition_.notify_one(); decoder_->AdvanceDecode(decodable_); } decoder_->AdvanceDecode(decodable_); UpdateResult(false); LOG(INFO) << "DecoderInternal exit"; } void RecognizerControllerImpl::WaitDecoderFinished() { if (decoder_thread_.joinable()) decoder_thread_.join(); } void RecognizerControllerImpl::RunNnetEvaluation(RecognizerControllerImpl* me) { me->RunNnetEvaluationInternal(); } void RecognizerControllerImpl::SetInputFinished() { nnet_producer_->SetInputFinished(); nnet_condition_.notify_one(); LOG(INFO) << "Set Input Finished"; } void RecognizerControllerImpl::WaitFinished() { abort_ = true; LOG(INFO) << "nnet wait finished"; nnet_condition_.notify_one(); if (nnet_thread_.joinable()) { nnet_thread_.join(); } } void RecognizerControllerImpl::RunNnetEvaluationInternal() { bool result = false; LOG(INFO) << "NnetEvaluationInteral begin"; while (!abort_) { std::unique_lock lock(nnet_mutex_); nnet_condition_.wait(lock); do { result = nnet_producer_->Compute(); decoder_condition_.notify_one(); } while (result); } LOG(INFO) << "NnetEvaluationInteral exit"; } void RecognizerControllerImpl::Accept(std::vector data) { nnet_producer_->Accept(data); nnet_condition_.notify_one(); } void RecognizerControllerImpl::InitDecoder() { global_frame_offset_ = 0; input_finished_ = false; num_frames_ = 0; result_.clear(); decodable_->Reset(); decoder_->Reset(); decoder_thread_ = std::thread(RunDecoder, this); } void RecognizerControllerImpl::AttentionRescoring() { decoder_->FinalizeSearch(); UpdateResult(false); // No need to do rescoring if (0.0 == opts_.decoder_opts.rescoring_weight) { LOG_EVERY_N(WARNING, 3) << "Not do AttentionRescoring!"; return; } LOG_EVERY_N(WARNING, 3) << "Do AttentionRescoring!"; // Inputs() returns N-best input ids, which is the basic unit for rescoring // In CtcPrefixBeamSearch, inputs are the same to outputs const auto& hypotheses = decoder_->Inputs(); int num_hyps = hypotheses.size(); if (num_hyps <= 0) { return; } std::vector rescoring_score; decodable_->AttentionRescoring( hypotheses, opts_.decoder_opts.reverse_weight, &rescoring_score); // combine ctc score and rescoring score for (size_t i = 0; i < num_hyps; i++) { VLOG(3) << "hyp " << i << " rescoring_score: " << rescoring_score[i] << " ctc_score: " << result_[i].score << " rescoring_weight: " << opts_.decoder_opts.rescoring_weight << " ctc_weight: " << opts_.decoder_opts.ctc_weight; result_[i].score = opts_.decoder_opts.rescoring_weight * rescoring_score[i] + opts_.decoder_opts.ctc_weight * result_[i].score; VLOG(3) << "hyp: " << result_[0].sentence << " score: " << result_[0].score; } std::sort(result_.begin(), result_.end(), DecodeResult::CompareFunc); VLOG(3) << "result: " << result_[0].sentence << " score: " << result_[0].score; } std::string RecognizerControllerImpl::GetFinalResult() { return result_[0].sentence; } std::string RecognizerControllerImpl::GetPartialResult() { return result_[0].sentence; } void RecognizerControllerImpl::UpdateResult(bool finish) { const auto& hypotheses = decoder_->Outputs(); const auto& inputs = decoder_->Inputs(); const auto& likelihood = decoder_->Likelihood(); const auto& times = decoder_->Times(); result_.clear(); CHECK_EQ(inputs.size(), likelihood.size()); for (size_t i = 0; i < hypotheses.size(); i++) { const std::vector& hypothesis = hypotheses[i]; DecodeResult path; path.score = likelihood[i]; for (size_t j = 0; j < hypothesis.size(); j++) { std::string word = symbol_table_->Find(hypothesis[j]); path.sentence += (" " + word); } path.sentence = DelBlank(path.sentence); // TimeStamp is only supported in final result // TimeStamp of the output of CtcWfstBeamSearch may be inaccurate due to // various FST operations when building the decoding graph. So here we // use time stamp of the input(e2e model unit), which is more accurate, // and it requires the symbol table of the e2e model used in training. if (symbol_table_ != nullptr && finish) { int offset = global_frame_offset_ * FrameShiftInMs(); const std::vector& input = inputs[i]; const std::vector time_stamp = times[i]; CHECK_EQ(input.size(), time_stamp.size()); for (size_t j = 0; j < input.size(); j++) { std::string word = symbol_table_->Find(input[j]); int start = time_stamp[j] * FrameShiftInMs() - time_stamp_gap_ > 0 ? time_stamp[j] * FrameShiftInMs() - time_stamp_gap_ : 0; if (j > 0) { start = (time_stamp[j] - time_stamp[j - 1]) * FrameShiftInMs() < time_stamp_gap_ ? (time_stamp[j - 1] + time_stamp[j]) / 2 * FrameShiftInMs() : start; } int end = time_stamp[j] * FrameShiftInMs(); if (j < input.size() - 1) { end = (time_stamp[j + 1] - time_stamp[j]) * FrameShiftInMs() < time_stamp_gap_ ? (time_stamp[j + 1] + time_stamp[j]) / 2 * FrameShiftInMs() : end; } WordPiece word_piece(word, offset + start, offset + end); path.word_pieces.emplace_back(word_piece); } } // if (post_processor_ != nullptr) { // path.sentence = post_processor_->Process(path.sentence, finish); // } result_.emplace_back(path); } if (DecodedSomething()) { VLOG(1) << "Partial CTC result " << result_[0].sentence; } } } // namespace ppspeech