# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import Any from typing import Dict from paddle import distributed as dist from paddle.io import DataLoader from paddle.nn import Layer from paddle.optimizer import Optimizer from paddle.optimizer.lr import LRScheduler from paddlespeech.t2s.models.starganv2_vc.losses import compute_d_loss from paddlespeech.t2s.models.starganv2_vc.losses import compute_g_loss from paddlespeech.t2s.training.extensions.evaluator import StandardEvaluator from paddlespeech.t2s.training.reporter import report from paddlespeech.t2s.training.updaters.standard_updater import StandardUpdater from paddlespeech.t2s.training.updaters.standard_updater import UpdaterState logging.basicConfig( format='%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s', datefmt='[%Y-%m-%d %H:%M:%S]') logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) class StarGANv2VCUpdater(StandardUpdater): def __init__(self, models: Dict[str, Layer], optimizers: Dict[str, Optimizer], schedulers: Dict[str, LRScheduler], dataloader: DataLoader, g_loss_params: Dict[str, Any]={ 'lambda_sty': 1., 'lambda_cyc': 5., 'lambda_ds': 1., 'lambda_norm': 1., 'lambda_asr': 10., 'lambda_f0': 5., 'lambda_f0_sty': 0.1, 'lambda_adv': 2., 'lambda_adv_cls': 0.5, 'norm_bias': 0.5, }, d_loss_params: Dict[str, Any]={ 'lambda_reg': 1., 'lambda_adv_cls': 0.1, 'lambda_con_reg': 10., }, adv_cls_epoch: int=50, con_reg_epoch: int=30, use_r1_reg: bool=False, output_dir=None): self.models = models self.optimizers = optimizers self.optimizer_g = optimizers['generator'] self.optimizer_s = optimizers['style_encoder'] self.optimizer_m = optimizers['mapping_network'] self.optimizer_d = optimizers['discriminator'] self.schedulers = schedulers self.scheduler_g = schedulers['generator'] self.scheduler_s = schedulers['style_encoder'] self.scheduler_m = schedulers['mapping_network'] self.scheduler_d = schedulers['discriminator'] self.dataloader = dataloader self.g_loss_params = g_loss_params self.d_loss_params = d_loss_params self.use_r1_reg = use_r1_reg self.con_reg_epoch = con_reg_epoch self.adv_cls_epoch = adv_cls_epoch self.state = UpdaterState(iteration=0, epoch=0) self.train_iterator = iter(self.dataloader) log_file = output_dir / 'worker_{}.log'.format(dist.get_rank()) self.filehandler = logging.FileHandler(str(log_file)) logger.addHandler(self.filehandler) self.logger = logger self.msg = "" def zero_grad(self): self.optimizer_d.clear_grad() self.optimizer_g.clear_grad() self.optimizer_m.clear_grad() self.optimizer_s.clear_grad() def scheduler(self): self.scheduler_d.step() self.scheduler_g.step() self.scheduler_m.step() self.scheduler_s.step() def update_core(self, batch): self.msg = "Rank: {}, ".format(dist.get_rank()) losses_dict = {} # parse batch x_real = batch['x_real'] y_org = batch['y_org'] x_ref = batch['x_ref'] x_ref2 = batch['x_ref2'] y_trg = batch['y_trg'] z_trg = batch['z_trg'] z_trg2 = batch['z_trg2'] use_con_reg = (self.state.epoch >= self.con_reg_epoch) use_adv_cls = (self.state.epoch >= self.adv_cls_epoch) # Discriminator loss # train the discriminator (by random reference) self.zero_grad() random_d_loss = compute_d_loss( nets=self.models, x_real=x_real, y_org=y_org, y_trg=y_trg, z_trg=z_trg, use_adv_cls=use_adv_cls, use_con_reg=use_con_reg, **self.d_loss_params) random_d_loss.backward() self.optimizer_d.step() # train the discriminator (by target reference) self.zero_grad() target_d_loss = compute_d_loss( nets=self.models, x_real=x_real, y_org=y_org, y_trg=y_trg, x_ref=x_ref, use_adv_cls=use_adv_cls, use_con_reg=use_con_reg, **self.d_loss_params) target_d_loss.backward() self.optimizer_d.step() report("train/random_d_loss", float(random_d_loss)) report("train/target_d_loss", float(target_d_loss)) losses_dict["random_d_loss"] = float(random_d_loss) losses_dict["target_d_loss"] = float(target_d_loss) # Generator # train the generator (by random reference) self.zero_grad() random_g_loss = compute_g_loss( nets=self.models, x_real=x_real, y_org=y_org, y_trg=y_trg, z_trgs=[z_trg, z_trg2], use_adv_cls=use_adv_cls, **self.g_loss_params) random_g_loss.backward() self.optimizer_g.step() self.optimizer_m.step() self.optimizer_s.step() # train the generator (by target reference) self.zero_grad() target_g_loss = compute_g_loss( nets=self.models, x_real=x_real, y_org=y_org, y_trg=y_trg, x_refs=[x_ref, x_ref2], use_adv_cls=use_adv_cls, **self.g_loss_params) target_g_loss.backward() # 此处是否要 optimizer_g optimizer_m optimizer_s 都写上? # 源码没写上后两个是否是疏忽? self.optimizer_g.step() # self.optimizer_m.step() # self.optimizer_s.step() report("train/random_g_loss", float(random_g_loss)) report("train/target_g_loss", float(target_g_loss)) losses_dict["random_g_loss"] = float(random_g_loss) losses_dict["target_g_loss"] = float(target_g_loss) self.scheduler() self.msg += ', '.join('{}: {:>.6f}'.format(k, v) for k, v in losses_dict.items()) class StarGANv2VCEvaluator(StandardEvaluator): def __init__(self, models: Dict[str, Layer], dataloader: DataLoader, g_loss_params: Dict[str, Any]={ 'lambda_sty': 1., 'lambda_cyc': 5., 'lambda_ds': 1., 'lambda_norm': 1., 'lambda_asr': 10., 'lambda_f0': 5., 'lambda_f0_sty': 0.1, 'lambda_adv': 2., 'lambda_adv_cls': 0.5, 'norm_bias': 0.5, }, d_loss_params: Dict[str, Any]={ 'lambda_reg': 1., 'lambda_adv_cls': 0.1, 'lambda_con_reg': 10., }, adv_cls_epoch: int=50, con_reg_epoch: int=30, use_r1_reg: bool=False, output_dir=None): self.models = models self.dataloader = dataloader self.g_loss_params = g_loss_params self.d_loss_params = d_loss_params self.use_r1_reg = use_r1_reg self.con_reg_epoch = con_reg_epoch self.adv_cls_epoch = adv_cls_epoch log_file = output_dir / 'worker_{}.log'.format(dist.get_rank()) self.filehandler = logging.FileHandler(str(log_file)) logger.addHandler(self.filehandler) self.logger = logger self.msg = "" def evaluate_core(self, batch): # logging.debug("Evaluate: ") self.msg = "Evaluate: " losses_dict = {} x_real = batch['x_real'] y_org = batch['y_org'] x_ref = batch['x_ref'] x_ref2 = batch['x_ref2'] y_trg = batch['y_trg'] z_trg = batch['z_trg'] z_trg2 = batch['z_trg2'] # eval the discriminator random_d_loss = compute_d_loss( nets=self.models, x_real=x_real, y_org=y_org, y_trg=y_trg, z_trg=z_trg, use_r1_reg=self.use_r1_reg, use_adv_cls=use_adv_cls, **self.d_loss_params) target_d_loss = compute_d_loss( nets=self.models, x_real=x_real, y_org=y_org, y_trg=y_trg, x_ref=x_ref, use_r1_reg=self.use_r1_reg, use_adv_cls=use_adv_cls, **self.d_loss_params) report("eval/random_d_loss", float(random_d_loss)) report("eval/target_d_loss", float(target_d_loss)) losses_dict["random_d_loss"] = float(random_d_loss) losses_dict["target_d_loss"] = float(target_d_loss) # eval the generator random_g_loss = compute_g_loss( nets=self.models, x_real=x_real, y_org=y_org, y_trg=y_trg, z_trgs=[z_trg, z_trg2], use_adv_cls=use_adv_cls, **self.g_loss_params) target_g_loss = compute_g_loss( nets=self.models, x_real=x_real, y_org=y_org, y_trg=y_trg, x_refs=[x_ref, x_ref2], use_adv_cls=use_adv_cls, **self.g_loss_params) report("eval/random_g_loss", float(random_g_loss)) report("eval/target_g_loss", float(target_g_loss)) losses_dict["random_g_loss"] = float(random_g_loss) losses_dict["target_g_loss"] = float(target_g_loss) self.msg += ', '.join('{}: {:>.6f}'.format(k, v) for k, v in losses_dict.items()) self.logger.info(self.msg)