# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import os import shutil from pathlib import Path import jsonlines import numpy as np import paddle import yaml from paddle import DataParallel from paddle import distributed as dist from paddle import nn from paddle.io import DataLoader from paddle.optimizer import Adam from yacs.config import CfgNode from paddlespeech.t2s.datasets.am_batch_fn import build_erniesat_collate_fn from paddlespeech.t2s.datasets.data_table import DataTable from paddlespeech.t2s.datasets.sampler import ErnieSATSampler from paddlespeech.t2s.models.ernie_sat import ErnieSAT from paddlespeech.t2s.models.ernie_sat import ErnieSATEvaluator from paddlespeech.t2s.models.ernie_sat import ErnieSATUpdater from paddlespeech.t2s.training.extensions.snapshot import Snapshot from paddlespeech.t2s.training.extensions.visualizer import VisualDL from paddlespeech.t2s.training.seeding import seed_everything from paddlespeech.t2s.training.trainer import Trainer def train_sp(args, config): # decides device type and whether to run in parallel # setup running environment correctly if (not paddle.is_compiled_with_cuda()) or args.ngpu == 0: paddle.set_device("cpu") else: paddle.set_device("gpu") world_size = paddle.distributed.get_world_size() if world_size > 1: paddle.distributed.init_parallel_env() # set the random seed, it is a must for multiprocess training seed_everything(config.seed) print( f"rank: {dist.get_rank()}, pid: {os.getpid()}, parent_pid: {os.getppid()}", ) fields = [ "text", "text_lengths", "speech", "speech_lengths", "align_start", "align_end" ] converters = {"speech": np.load} # dataloader has been too verbose logging.getLogger("DataLoader").disabled = True # construct dataset for training and validation with jsonlines.open(args.train_metadata, 'r') as reader: train_metadata = list(reader) train_dataset = DataTable( data=train_metadata, fields=fields, converters=converters, ) with jsonlines.open(args.dev_metadata, 'r') as reader: dev_metadata = list(reader) dev_dataset = DataTable( data=dev_metadata, fields=fields, converters=converters, ) # collate function and dataloader collate_fn = build_erniesat_collate_fn( mlm_prob=config.mlm_prob, mean_phn_span=config.mean_phn_span, seg_emb=config.model['enc_input_layer'] == 'sega_mlm', text_masking=config["model"]["text_masking"]) train_sampler = ErnieSATSampler( train_dataset, batch_size=config.batch_size, shuffle=True, drop_last=True) print("samplers done!") train_dataloader = DataLoader( train_dataset, batch_sampler=train_sampler, collate_fn=collate_fn, num_workers=config.num_workers) dev_dataloader = DataLoader( dev_dataset, shuffle=False, drop_last=False, batch_size=config.batch_size, collate_fn=collate_fn, num_workers=config.num_workers) print("dataloaders done!") with open(args.phones_dict, "r") as f: phn_id = [line.strip().split() for line in f.readlines()] vocab_size = len(phn_id) print("vocab_size:", vocab_size) odim = config.n_mels model = ErnieSAT(idim=vocab_size, odim=odim, **config["model"]) if world_size > 1: model = DataParallel(model) print("model done!") scheduler = paddle.optimizer.lr.NoamDecay( d_model=config["scheduler_params"]["d_model"], warmup_steps=config["scheduler_params"]["warmup_steps"]) grad_clip = nn.ClipGradByGlobalNorm(config["grad_clip"]) optimizer = Adam( learning_rate=scheduler, grad_clip=grad_clip, parameters=model.parameters()) print("optimizer done!") output_dir = Path(args.output_dir) output_dir.mkdir(parents=True, exist_ok=True) if dist.get_rank() == 0: config_name = args.config.split("/")[-1] # copy conf to output_dir shutil.copyfile(args.config, output_dir / config_name) updater = ErnieSATUpdater( model=model, optimizer=optimizer, scheduler=scheduler, dataloader=train_dataloader, text_masking=config["model"]["text_masking"], odim=odim, vocab_size=vocab_size, output_dir=output_dir) trainer = Trainer(updater, (config.max_epoch, 'epoch'), output_dir) evaluator = ErnieSATEvaluator( model=model, dataloader=dev_dataloader, text_masking=config["model"]["text_masking"], odim=odim, vocab_size=vocab_size, output_dir=output_dir, ) if dist.get_rank() == 0: trainer.extend(evaluator, trigger=(1, "epoch")) trainer.extend(VisualDL(output_dir), trigger=(1, "iteration")) trainer.extend( Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch')) trainer.run() def main(): # parse args and config and redirect to train_sp parser = argparse.ArgumentParser(description="Train an ErnieSAT model.") parser.add_argument("--config", type=str, help="ErnieSAT config file.") parser.add_argument("--train-metadata", type=str, help="training data.") parser.add_argument("--dev-metadata", type=str, help="dev data.") parser.add_argument("--output-dir", type=str, help="output dir.") parser.add_argument( "--ngpu", type=int, default=1, help="if ngpu=0, use cpu.") parser.add_argument( "--phones-dict", type=str, default=None, help="phone vocabulary file.") args = parser.parse_args() with open(args.config) as f: config = CfgNode(yaml.safe_load(f)) print("========Args========") print(yaml.safe_dump(vars(args))) print("========Config========") print(config) print( f"master see the word size: {dist.get_world_size()}, from pid: {os.getpid()}" ) # dispatch if args.ngpu > 1: dist.spawn(train_sp, (args, config), nprocs=args.ngpu) else: train_sp(args, config) if __name__ == "__main__": main()