# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Decoder self-attention layer definition.""" import paddle from paddle import nn from parakeet.modules.layer_norm import LayerNorm class DecoderLayer(nn.Layer): """Single decoder layer module. Parameters ---------- size : int Input dimension. self_attn : paddle.nn.Layer Self-attention module instance. `MultiHeadedAttention` instance can be used as the argument. src_attn : paddle.nn.Layer Self-attention module instance. `MultiHeadedAttention` instance can be used as the argument. feed_forward : paddle.nn.Layer Feed-forward module instance. `PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance can be used as the argument. dropout_rate : float Dropout rate. normalize_before : bool Whether to use layer_norm before the first block. concat_after : bool Whether to concat attention layer's input and output. if True, additional linear will be applied. i.e. x -> x + linear(concat(x, att(x))) if False, no additional linear will be applied. i.e. x -> x + att(x) """ def __init__( self, size, self_attn, src_attn, feed_forward, dropout_rate, normalize_before=True, concat_after=False, ): """Construct an DecoderLayer object.""" super().__init__() self.size = size self.self_attn = self_attn self.src_attn = src_attn self.feed_forward = feed_forward self.norm1 = LayerNorm(size) self.norm2 = LayerNorm(size) self.norm3 = LayerNorm(size) self.dropout = nn.Dropout(dropout_rate) self.normalize_before = normalize_before self.concat_after = concat_after if self.concat_after: self.concat_linear1 = nn.Linear(size + size, size) self.concat_linear2 = nn.Linear(size + size, size) def forward(self, tgt, tgt_mask, memory, memory_mask, cache=None): """Compute decoded features. Parameters ---------- tgt : paddle.Tensor Input tensor (#batch, maxlen_out, size). tgt_mask : paddle.Tensor Mask for input tensor (#batch, maxlen_out). memory : paddle.Tensor Encoded memory, float32 (#batch, maxlen_in, size). memory_mask : paddle.Tensor Encoded memory mask (#batch, maxlen_in). cache : List[paddle.Tensor] List of cached tensors. Each tensor shape should be (#batch, maxlen_out - 1, size). Returns ---------- paddle.Tensor Output tensor(#batch, maxlen_out, size). paddle.Tensor Mask for output tensor (#batch, maxlen_out). paddle.Tensor Encoded memory (#batch, maxlen_in, size). paddle.Tensor Encoded memory mask (#batch, maxlen_in). """ residual = tgt if self.normalize_before: tgt = self.norm1(tgt) if cache is None: tgt_q = tgt tgt_q_mask = tgt_mask else: # compute only the last frame query keeping dim: max_time_out -> 1 assert cache.shape == [ tgt.shape[0], tgt.shape[1] - 1, self.size, ], f"{cache.shape} == {(tgt.shape[0], tgt.shape[1] - 1, self.size)}" tgt_q = tgt[:, -1:, :] residual = residual[:, -1:, :] tgt_q_mask = None if tgt_mask is not None: tgt_mask = paddle.cast(tgt_mask, dtype="int64") tgt_q_mask = tgt_mask[:, -1:, :] tgt_q_mask = paddle.cast(tgt_q_mask, dtype="bool") if self.concat_after: tgt_concat = paddle.concat( (tgt_q, self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)), axis=-1) x = residual + self.concat_linear1(tgt_concat) else: x = residual + self.dropout( self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)) if not self.normalize_before: x = self.norm1(x) residual = x if self.normalize_before: x = self.norm2(x) if self.concat_after: x_concat = paddle.concat( (x, self.src_attn(x, memory, memory, memory_mask)), axis=-1) x = residual + self.concat_linear2(x_concat) else: x = residual + self.dropout( self.src_attn(x, memory, memory, memory_mask)) if not self.normalize_before: x = self.norm2(x) residual = x if self.normalize_before: x = self.norm3(x) x = residual + self.dropout(self.feed_forward(x)) if not self.normalize_before: x = self.norm3(x) if cache is not None: x = paddle.concat([cache, x], axis=1) return x, tgt_mask, memory, memory_mask