# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from pathlib import Path import numpy as np import paddle from matplotlib import pyplot as plt from parakeet.exps.tacotron2.config import get_cfg_defaults from parakeet.frontend import EnglishCharacter from parakeet.models.tacotron2 import Tacotron2 from parakeet.utils import display def main(config, args): paddle.set_device(args.device) # model frontend = EnglishCharacter() model = Tacotron2.from_pretrained(config, args.checkpoint_path) model.eval() # inputs input_path = Path(args.input).expanduser() sentences = [] with open(input_path, "rt") as f: for line in f: line_list = line.strip().split() utt_id = line_list[0] sentence = " ".join(line_list[1:]) sentences.append((utt_id, sentence)) if args.output is None: output_dir = input_path.parent / "synthesis" else: output_dir = Path(args.output).expanduser() output_dir.mkdir(exist_ok=True) for i, sentence in enumerate(sentences): sentence = paddle.to_tensor(frontend(sentence)).unsqueeze(0) outputs = model.infer(sentence) mel_output = outputs["mel_outputs_postnet"][0].numpy().T alignment = outputs["alignments"][0].numpy().T np.save(str(output_dir / f"sentence_{i}"), mel_output) display.plot_alignment(alignment) plt.savefig(str(output_dir / f"sentence_{i}.png")) if args.verbose: print("spectrogram saved at {}".format(output_dir / f"sentence_{i}.npy")) if __name__ == "__main__": config = get_cfg_defaults() parser = argparse.ArgumentParser( description="generate mel spectrogram with TransformerTTS.") parser.add_argument( "--config", type=str, metavar="FILE", help="extra config to overwrite the default config") parser.add_argument( "--checkpoint_path", type=str, help="path of the checkpoint to load.") parser.add_argument("--input", type=str, help="path of the text sentences") parser.add_argument("--output", type=str, help="path to save outputs") parser.add_argument( "--device", type=str, default="cpu", help="device type to use.") parser.add_argument( "--opts", nargs=argparse.REMAINDER, help="options to overwrite --config file and the default config, passing in KEY VALUE pairs" ) parser.add_argument( "-v", "--verbose", action="store_true", help="print msg") args = parser.parse_args() if args.config: config.merge_from_file(args.config) if args.opts: config.merge_from_list(args.opts) config.freeze() print(config) print(args) main(config, args)