# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import os from pathlib import Path import jsonlines import numpy as np import paddle import soundfile as sf import yaml from paddle import jit from paddle.static import InputSpec from yacs.config import CfgNode from parakeet.datasets.data_table import DataTable from parakeet.models.parallel_wavegan import PWGGenerator from parakeet.models.parallel_wavegan import PWGInference from parakeet.models.speedyspeech import SpeedySpeech from parakeet.models.speedyspeech import SpeedySpeechInference from parakeet.modules.normalizer import ZScore def evaluate(args, speedyspeech_config, pwg_config): # dataloader has been too verbose logging.getLogger("DataLoader").disabled = True # construct dataset for evaluation with jsonlines.open(args.test_metadata, 'r') as reader: test_metadata = list(reader) test_dataset = DataTable( data=test_metadata, fields=["utt_id", "phones", "tones"]) with open(args.phones_dict, "r") as f: phn_id = [line.strip().split() for line in f.readlines()] vocab_size = len(phn_id) print("vocab_size:", vocab_size) with open(args.tones_dict, "r") as f: tone_id = [line.strip().split() for line in f.readlines()] tone_size = len(tone_id) print("tone_size:", tone_size) model = SpeedySpeech( vocab_size=vocab_size, tone_size=tone_size, **speedyspeech_config["model"]) model.set_state_dict( paddle.load(args.speedyspeech_checkpoint)["main_params"]) model.eval() vocoder = PWGGenerator(**pwg_config["generator_params"]) vocoder.set_state_dict(paddle.load(args.pwg_checkpoint)["generator_params"]) vocoder.remove_weight_norm() vocoder.eval() print("model done!") stat = np.load(args.speedyspeech_stat) mu, std = stat mu = paddle.to_tensor(mu) std = paddle.to_tensor(std) speedyspeech_normalizer = ZScore(mu, std) speedyspeech_normalizer.eval() stat = np.load(args.pwg_stat) mu, std = stat mu = paddle.to_tensor(mu) std = paddle.to_tensor(std) pwg_normalizer = ZScore(mu, std) pwg_normalizer.eval() speedyspeech_inference = SpeedySpeechInference(speedyspeech_normalizer, model) speedyspeech_inference.eval() speedyspeech_inference = jit.to_static( speedyspeech_inference, input_spec=[ InputSpec([-1], dtype=paddle.int64), InputSpec( [-1], dtype=paddle.int64) ]) paddle.jit.save(speedyspeech_inference, os.path.join(args.inference_dir, "speedyspeech")) speedyspeech_inference = paddle.jit.load( os.path.join(args.inference_dir, "speedyspeech")) pwg_inference = PWGInference(pwg_normalizer, vocoder) pwg_inference.eval() pwg_inference = jit.to_static( pwg_inference, input_spec=[ InputSpec([-1, 80], dtype=paddle.float32), ]) paddle.jit.save(pwg_inference, os.path.join(args.inference_dir, "pwg")) pwg_inference = paddle.jit.load(os.path.join(args.inference_dir, "pwg")) output_dir = Path(args.output_dir) output_dir.mkdir(parents=True, exist_ok=True) for datum in test_dataset: utt_id = datum["utt_id"] phones = paddle.to_tensor(datum["phones"]) tones = paddle.to_tensor(datum["tones"]) with paddle.no_grad(): wav = pwg_inference(speedyspeech_inference(phones, tones)) sf.write( output_dir / (utt_id + ".wav"), wav.numpy(), samplerate=speedyspeech_config.fs) print(f"{utt_id} done!") def main(): # parse args and config and redirect to train_sp parser = argparse.ArgumentParser( description="Synthesize with speedyspeech & parallel wavegan.") parser.add_argument( "--speedyspeech-config", type=str, help="config file for speedyspeech.") parser.add_argument( "--speedyspeech-checkpoint", type=str, help="speedyspeech checkpoint to load.") parser.add_argument( "--speedyspeech-stat", type=str, help="mean and standard deviation used to normalize spectrogram when training speedyspeech." ) parser.add_argument( "--pwg-config", type=str, help="config file for parallelwavegan.") parser.add_argument( "--pwg-checkpoint", type=str, help="parallel wavegan generator parameters to load.") parser.add_argument( "--pwg-stat", type=str, help="mean and standard deviation used to normalize spectrogram when training speedyspeech." ) parser.add_argument( "--phones-dict", type=str, default=None, help="phone vocabulary file.") parser.add_argument( "--tones-dict", type=str, default=None, help="tone vocabulary file.") parser.add_argument("--test-metadata", type=str, help="test metadata") parser.add_argument("--output-dir", type=str, help="output dir") parser.add_argument( "--inference-dir", type=str, help="dir to save inference models") parser.add_argument( "--device", type=str, default="gpu", help="device type to use") parser.add_argument("--verbose", type=int, default=1, help="verbose") args, _ = parser.parse_known_args() paddle.set_device(args.device) with open(args.speedyspeech_config) as f: speedyspeech_config = CfgNode(yaml.safe_load(f)) with open(args.pwg_config) as f: pwg_config = CfgNode(yaml.safe_load(f)) print("========Args========") print(yaml.safe_dump(vars(args))) print("========Config========") print(speedyspeech_config) print(pwg_config) evaluate(args, speedyspeech_config, pwg_config) if __name__ == "__main__": main()