# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from paddle import DataParallel from paddle import distributed as dist from paddle.io import DataLoader from paddle.nn.clip import ClipGradByGlobalNorm from paddle.optimizer import Adam from parakeet.exps.ge2e.config import get_cfg_defaults from parakeet.exps.ge2e.speaker_verification_dataset import Collate from parakeet.exps.ge2e.speaker_verification_dataset import MultiSpeakerMelDataset from parakeet.exps.ge2e.speaker_verification_dataset import MultiSpeakerSampler from parakeet.models.lstm_speaker_encoder import LSTMSpeakerEncoder from parakeet.training import default_argument_parser from parakeet.training import ExperimentBase class Ge2eExperiment(ExperimentBase): def setup_model(self): config = self.config model = LSTMSpeakerEncoder(config.data.n_mels, config.model.num_layers, config.model.hidden_size, config.model.embedding_size) optimizer = Adam( config.training.learning_rate_init, parameters=model.parameters(), grad_clip=ClipGradByGlobalNorm(3)) self.model = DataParallel(model) if self.parallel else model self.model_core = model self.optimizer = optimizer def setup_dataloader(self): config = self.config train_dataset = MultiSpeakerMelDataset(self.args.data) sampler = MultiSpeakerSampler(train_dataset, config.training.speakers_per_batch, config.training.utterances_per_speaker) train_loader = DataLoader( train_dataset, batch_sampler=sampler, collate_fn=Collate(config.data.partial_n_frames), num_workers=16) self.train_dataset = train_dataset self.train_loader = train_loader def train_batch(self): start = time.time() batch = self.read_batch() data_loader_time = time.time() - start self.optimizer.clear_grad() self.model.train() specs = batch loss, eer = self.model(specs, self.config.training.speakers_per_batch) loss.backward() self.model_core.do_gradient_ops() self.optimizer.step() iteration_time = time.time() - start # logging loss_value = float(loss) msg = "Rank: {}, ".format(dist.get_rank()) msg += "step: {}, ".format(self.iteration) msg += "time: {:>.3f}s/{:>.3f}s, ".format(data_loader_time, iteration_time) msg += 'loss: {:>.6f} err: {:>.6f}'.format(loss_value, eer) self.logger.info(msg) if dist.get_rank() == 0: self.visualizer.add_scalar("train/loss", loss_value, self.iteration) self.visualizer.add_scalar("train/eer", eer, self.iteration) self.visualizer.add_scalar("param/w", float(self.model_core.similarity_weight), self.iteration) self.visualizer.add_scalar("param/b", float(self.model_core.similarity_bias), self.iteration) def valid(self): pass def main_sp(config, args): exp = Ge2eExperiment(config, args) exp.setup() exp.resume_or_load() exp.run() def main(config, args): if args.nprocs > 1 and args.device == "gpu": dist.spawn(main_sp, args=(config, args), nprocs=args.nprocs) else: main_sp(config, args) if __name__ == "__main__": config = get_cfg_defaults() parser = default_argument_parser() args = parser.parse_args() if args.config: config.merge_from_file(args.config) if args.opts: config.merge_from_list(args.opts) config.freeze() print(config) print(args) main(config, args)