# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random from pathlib import Path import numpy as np from paddle.io import BatchSampler from paddle.io import Dataset from parakeet.exps.ge2e.random_cycle import random_cycle class MultiSpeakerMelDataset(Dataset): """A 2 layer directory thatn contains mel spectrograms in *.npy format. An Example file structure tree is shown below. We prefer to preprocess raw datasets and organized them like this. dataset_root/ speaker1/ utterance1.npy utterance2.npy utterance3.npy speaker2/ utterance1.npy utterance2.npy utterance3.npy """ def __init__(self, dataset_root: Path): self.root = Path(dataset_root).expanduser() speaker_dirs = [f for f in self.root.glob("*") if f.is_dir()] speaker_utterances = { speaker_dir: list(speaker_dir.glob("*.npy")) for speaker_dir in speaker_dirs } self.speaker_dirs = speaker_dirs self.speaker_to_utterances = speaker_utterances # meta data self.num_speakers = len(self.speaker_dirs) self.num_utterances = np.sum( len(utterances) for speaker, utterances in self.speaker_to_utterances.items()) def get_example_by_index(self, speaker_index, utterance_index): speaker_dir = self.speaker_dirs[speaker_index] fpath = self.speaker_to_utterances[speaker_dir][utterance_index] return self[fpath] def __getitem__(self, fpath): return np.load(fpath) def __len__(self): return int(self.num_utterances) class MultiSpeakerSampler(BatchSampler): """A multi-stratal sampler designed for speaker verification task. First, N speakers from all speakers are sampled randomly. Then, for each speaker, randomly sample M utterances from their corresponding utterances. """ def __init__(self, dataset: MultiSpeakerMelDataset, speakers_per_batch: int, utterances_per_speaker: int): self._speakers = list(dataset.speaker_dirs) self._speaker_to_utterances = dataset.speaker_to_utterances self.speakers_per_batch = speakers_per_batch self.utterances_per_speaker = utterances_per_speaker def __iter__(self): # yield list of Paths speaker_generator = iter(random_cycle(self._speakers)) speaker_utterances_generator = { s: iter(random_cycle(us)) for s, us in self._speaker_to_utterances.items() } while True: speakers = [] for _ in range(self.speakers_per_batch): speakers.append(next(speaker_generator)) utterances = [] for s in speakers: us = speaker_utterances_generator[s] for _ in range(self.utterances_per_speaker): utterances.append(next(us)) yield utterances class RandomClip(object): def __init__(self, frames): self.frames = frames def __call__(self, spec): # spec [T, C] T = spec.shape[0] start = random.randint(0, T - self.frames) return spec[start:start + self.frames, :] class Collate(object): def __init__(self, num_frames): self.random_crop = RandomClip(num_frames) def __call__(self, examples): frame_clips = [self.random_crop(mel) for mel in examples] batced_clips = np.stack(frame_clips) return batced_clips if __name__ == "__main__": mydataset = MultiSpeakerMelDataset( Path("/home/chenfeiyu/datasets/SV2TTS/encoder")) print(mydataset.get_example_by_index(0, 10))