# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from pathlib import Path import jsonlines import numpy as np import paddle import soundfile as sf import yaml from paddle import distributed as dist from timer import timer from yacs.config import CfgNode from parakeet.datasets.data_table import DataTable from parakeet.models.parallel_wavegan import PWGGenerator def main(): parser = argparse.ArgumentParser( description="Synthesize with parallel wavegan.") parser.add_argument( "--config", type=str, help="parallel wavegan config file.") parser.add_argument("--checkpoint", type=str, help="snapshot to load.") parser.add_argument("--test-metadata", type=str, help="dev data.") parser.add_argument("--output-dir", type=str, help="output dir.") parser.add_argument( "--device", type=str, default="gpu", help="device to run.") parser.add_argument("--verbose", type=int, default=1, help="verbose.") args = parser.parse_args() with open(args.config) as f: config = CfgNode(yaml.safe_load(f)) print("========Args========") print(yaml.safe_dump(vars(args))) print("========Config========") print(config) print( f"master see the word size: {dist.get_world_size()}, from pid: {os.getpid()}" ) paddle.set_device(args.device) generator = PWGGenerator(**config["generator_params"]) state_dict = paddle.load(args.checkpoint) generator.set_state_dict(state_dict["generator_params"]) generator.remove_weight_norm() generator.eval() with jsonlines.open(args.test_metadata, 'r') as reader: metadata = list(reader) test_dataset = DataTable( metadata, fields=['utt_id', 'feats'], converters={ 'utt_id': None, 'feats': np.load, }) output_dir = Path(args.output_dir) output_dir.mkdir(parents=True, exist_ok=True) N = 0 T = 0 for example in test_dataset: utt_id = example['utt_id'] mel = example['feats'] mel = paddle.to_tensor(mel) # (T, C) with timer() as t: with paddle.no_grad(): wav = generator.inference(c=mel) wav = wav.numpy() N += wav.size T += t.elapse speed = wav.size / t.elapse print( f"{utt_id}, mel: {mel.shape}, wave: {wav.shape}, time: {t.elapse}s, Hz: {speed}, RTF: {config.fs / speed}." ) sf.write(str(output_dir / (utt_id + ".wav")), wav, samplerate=config.fs) print(f"generation speed: {N / T}Hz, RTF: {config.fs / (N / T) }") if __name__ == "__main__": main()