# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from concurrent.futures import ThreadPoolExecutor from operator import itemgetter from pathlib import Path from typing import Any from typing import Dict from typing import List import jsonlines import librosa import numpy as np import tqdm import yaml from yacs.config import CfgNode as Configuration from paddlespeech.t2s.datasets.get_feats import LogMelFBank from paddlespeech.t2s.frontend import English def get_lj_sentences(file_name, frontend): '''read MFA duration.txt Args: file_name (str or Path) Returns: Dict: sentence: {'utt': ([char], [int])} ''' f = open(file_name, 'r') sentence = {} speaker_set = set() for line in f: line_list = line.strip().split('|') utt = line_list[0] speaker = utt.split("-")[0][:2] speaker_set.add(speaker) raw_text = line_list[-1] phonemes = frontend.phoneticize(raw_text) phonemes = phonemes[1:-1] phonemes = [phn for phn in phonemes if not phn.isspace()] sentence[utt] = (phonemes, speaker) f.close() return sentence, speaker_set def get_input_token(sentence, output_path): '''get phone set from training data and save it Args: sentence (Dict): sentence: {'utt': ([char], str)} output_path (str or path): path to save phone_id_map ''' phn_token = set() for utt in sentence: for phn in sentence[utt][0]: if phn != "": phn_token.add(phn) phn_token = list(phn_token) phn_token.sort() phn_token = ["", ""] + phn_token phn_token += [""] with open(output_path, 'w') as f: for i, phn in enumerate(phn_token): f.write(phn + ' ' + str(i) + '\n') def get_spk_id_map(speaker_set, output_path): speakers = sorted(list(speaker_set)) with open(output_path, 'w') as f: for i, spk in enumerate(speakers): f.write(spk + ' ' + str(i) + '\n') def process_sentence(config: Dict[str, Any], fp: Path, sentences: Dict, output_dir: Path, mel_extractor=None): utt_id = fp.stem record = None if utt_id in sentences: # reading, resampling may occur wav, _ = librosa.load(str(fp), sr=config.fs) if len(wav.shape) != 1 or np.abs(wav).max() > 1.0: return record assert len(wav.shape) == 1, f"{utt_id} is not a mono-channel audio." assert np.abs(wav).max( ) <= 1.0, f"{utt_id} is seems to be different that 16 bit PCM." phones = sentences[utt_id][0] speaker = sentences[utt_id][1] logmel = mel_extractor.get_log_mel_fbank(wav, base='e') # change duration according to mel_length num_frames = logmel.shape[0] mel_dir = output_dir / "data_speech" mel_dir.mkdir(parents=True, exist_ok=True) mel_path = mel_dir / (utt_id + "_speech.npy") np.save(mel_path, logmel) record = { "utt_id": utt_id, "phones": phones, "text_lengths": len(phones), "speech_lengths": num_frames, "speech": str(mel_path), "speaker": speaker } return record def process_sentences(config, fps: List[Path], sentences: Dict, output_dir: Path, mel_extractor=None, nprocs: int=1): if nprocs == 1: results = [] for fp in tqdm.tqdm(fps, total=len(fps)): record = process_sentence( config=config, fp=fp, sentences=sentences, output_dir=output_dir, mel_extractor=mel_extractor) if record: results.append(record) else: with ThreadPoolExecutor(nprocs) as pool: futures = [] with tqdm.tqdm(total=len(fps)) as progress: for fp in fps: future = pool.submit(process_sentence, config, fp, sentences, output_dir, mel_extractor) future.add_done_callback(lambda p: progress.update()) futures.append(future) results = [] for ft in futures: record = ft.result() if record: results.append(record) results.sort(key=itemgetter("utt_id")) with jsonlines.open(output_dir / "metadata.jsonl", 'w') as writer: for item in results: writer.write(item) print("Done") def main(): # parse config and args parser = argparse.ArgumentParser( description="Preprocess audio and then extract features.") parser.add_argument( "--dataset", default="ljspeech", type=str, help="name of dataset, should in {ljspeech} now") parser.add_argument( "--rootdir", default=None, type=str, help="directory to dataset.") parser.add_argument( "--dumpdir", type=str, required=True, help="directory to dump feature files.") parser.add_argument( "--config-path", default="conf/default.yaml", type=str, help="yaml format configuration file.") parser.add_argument( "--verbose", type=int, default=1, help="logging level. higher is more logging. (default=1)") parser.add_argument( "--num-cpu", type=int, default=1, help="number of process.") args = parser.parse_args() config_path = Path(args.config_path).resolve() root_dir = Path(args.rootdir).expanduser() dumpdir = Path(args.dumpdir).expanduser() # use absolute path dumpdir = dumpdir.resolve() dumpdir.mkdir(parents=True, exist_ok=True) assert root_dir.is_dir() with open(config_path, 'rt') as f: _C = yaml.safe_load(f) _C = Configuration(_C) config = _C.clone() if args.verbose > 1: print(vars(args)) print(config) phone_id_map_path = dumpdir / "phone_id_map.txt" speaker_id_map_path = dumpdir / "speaker_id_map.txt" if args.dataset == "ljspeech": wav_files = sorted(list((root_dir / "wavs").rglob("*.wav"))) frontend = English() sentences, speaker_set = get_lj_sentences(root_dir / "metadata.csv", frontend) get_input_token(sentences, phone_id_map_path) get_spk_id_map(speaker_set, speaker_id_map_path) # split data into 3 sections num_train = 12900 num_dev = 100 train_wav_files = wav_files[:num_train] dev_wav_files = wav_files[num_train:num_train + num_dev] test_wav_files = wav_files[num_train + num_dev:] train_dump_dir = dumpdir / "train" / "raw" train_dump_dir.mkdir(parents=True, exist_ok=True) dev_dump_dir = dumpdir / "dev" / "raw" dev_dump_dir.mkdir(parents=True, exist_ok=True) test_dump_dir = dumpdir / "test" / "raw" test_dump_dir.mkdir(parents=True, exist_ok=True) # Extractor mel_extractor = LogMelFBank( sr=config.fs, n_fft=config.n_fft, hop_length=config.n_shift, win_length=config.win_length, window=config.window, n_mels=config.n_mels, fmin=config.fmin, fmax=config.fmax) # process for the 3 sections if train_wav_files: process_sentences( config=config, fps=train_wav_files, sentences=sentences, output_dir=train_dump_dir, mel_extractor=mel_extractor, nprocs=args.num_cpu) if dev_wav_files: process_sentences( config=config, fps=dev_wav_files, sentences=sentences, output_dir=dev_dump_dir, mel_extractor=mel_extractor, nprocs=args.num_cpu) if test_wav_files: process_sentences( config=config, fps=test_wav_files, sentences=sentences, output_dir=test_dump_dir, mel_extractor=mel_extractor, nprocs=args.num_cpu) if __name__ == "__main__": main()