# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from pathlib import Path import jsonlines import numpy as np import paddle import soundfile as sf import yaml from paddle import distributed as dist from timer import timer from yacs.config import CfgNode import paddlespeech from paddlespeech.t2s.datasets.data_table import DataTable def main(): parser = argparse.ArgumentParser(description="Synthesize with GANVocoder.") parser.add_argument( "--generator-type", type=str, default="pwgan", help="type of GANVocoder, should in {pwgan, mb_melgan, style_melgan, } now" ) parser.add_argument("--config", type=str, help="GANVocoder config file.") parser.add_argument("--checkpoint", type=str, help="snapshot to load.") parser.add_argument("--test-metadata", type=str, help="dev data.") parser.add_argument("--output-dir", type=str, help="output dir.") parser.add_argument( "--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.") parser.add_argument("--verbose", type=int, default=1, help="verbose.") args = parser.parse_args() with open(args.config) as f: config = CfgNode(yaml.safe_load(f)) print("========Args========") print(yaml.safe_dump(vars(args))) print("========Config========") print(config) print( f"master see the word size: {dist.get_world_size()}, from pid: {os.getpid()}" ) if args.ngpu == 0: paddle.set_device("cpu") elif args.ngpu > 0: paddle.set_device("gpu") else: print("ngpu should >= 0 !") class_map = { "hifigan": "HiFiGANGenerator", "mb_melgan": "MelGANGenerator", "pwgan": "PWGGenerator", "style_melgan": "StyleMelGANGenerator", } generator_type = args.generator_type assert generator_type in class_map print("generator_type:", generator_type) generator_class = getattr(paddlespeech.t2s.models, class_map[generator_type]) generator = generator_class(**config["generator_params"]) state_dict = paddle.load(args.checkpoint) generator.set_state_dict(state_dict["generator_params"]) generator.remove_weight_norm() generator.eval() with jsonlines.open(args.test_metadata, 'r') as reader: metadata = list(reader) test_dataset = DataTable( metadata, fields=['utt_id', 'feats'], converters={ 'utt_id': None, 'feats': np.load, }) output_dir = Path(args.output_dir) output_dir.mkdir(parents=True, exist_ok=True) N = 0 T = 0 for example in test_dataset: utt_id = example['utt_id'] mel = example['feats'] mel = paddle.to_tensor(mel) # (T, C) with timer() as t: with paddle.no_grad(): wav = generator.inference(c=mel) wav = wav.numpy() N += wav.size T += t.elapse speed = wav.size / t.elapse rtf = config.fs / speed print( f"{utt_id}, mel: {mel.shape}, wave: {wav.shape}, time: {t.elapse}s, Hz: {speed}, RTF: {rtf}." ) sf.write(str(output_dir / (utt_id + ".wav")), wav, samplerate=config.fs) print(f"generation speed: {N / T}Hz, RTF: {config.fs / (N / T) }") if __name__ == "__main__": main()