# Copyright 2021 Mobvoi Inc. All Rights Reserved. # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Modified from wenet(https://github.com/wenet-e2e/wenet) """U2 ASR Model Unified Streaming and Non-streaming Two-pass End-to-end Model for Speech Recognition (https://arxiv.org/pdf/2012.05481.pdf) """ import sys import time from collections import defaultdict from typing import Dict from typing import List from typing import Optional from typing import Tuple import paddle from paddle import jit from paddle import nn from paddlespeech.audio.utils.tensor_utils import add_sos_eos from paddlespeech.audio.utils.tensor_utils import pad_sequence from paddlespeech.audio.utils.tensor_utils import reverse_pad_list from paddlespeech.audio.utils.tensor_utils import st_reverse_pad_list from paddlespeech.audio.utils.tensor_utils import th_accuracy from paddlespeech.s2t.decoders.scorers.ctc import CTCPrefixScorer from paddlespeech.s2t.frontend.utility import IGNORE_ID from paddlespeech.s2t.frontend.utility import load_cmvn from paddlespeech.s2t.models.asr_interface import ASRInterface from paddlespeech.s2t.modules.cmvn import GlobalCMVN from paddlespeech.s2t.modules.ctc import CTCDecoderBase from paddlespeech.s2t.modules.decoder import BiTransformerDecoder from paddlespeech.s2t.modules.decoder import TransformerDecoder from paddlespeech.s2t.modules.encoder import ConformerEncoder from paddlespeech.s2t.modules.encoder import TransformerEncoder from paddlespeech.s2t.modules.initializer import DefaultInitializerContext from paddlespeech.s2t.modules.loss import LabelSmoothingLoss from paddlespeech.s2t.modules.mask import make_pad_mask from paddlespeech.s2t.modules.mask import mask_finished_preds from paddlespeech.s2t.modules.mask import mask_finished_scores from paddlespeech.s2t.modules.mask import subsequent_mask from paddlespeech.s2t.utils import checkpoint from paddlespeech.s2t.utils import layer_tools from paddlespeech.s2t.utils.ctc_utils import remove_duplicates_and_blank from paddlespeech.s2t.utils.log import Log from paddlespeech.s2t.utils.utility import log_add from paddlespeech.s2t.utils.utility import UpdateConfig __all__ = ["U2Model", "U2InferModel"] logger = Log(__name__).getlog() class U2BaseModel(ASRInterface, nn.Layer): """CTC-Attention hybrid Encoder-Decoder model""" def __init__(self, vocab_size: int, encoder: TransformerEncoder, decoder: TransformerDecoder, ctc: CTCDecoderBase, ctc_weight: float=0.5, ignore_id: int=IGNORE_ID, reverse_weight: float=0.0, lsm_weight: float=0.0, length_normalized_loss: bool=False, **kwargs): assert 0.0 <= ctc_weight <= 1.0, ctc_weight nn.Layer.__init__(self) # note that eos is the same as sos (equivalent ID) self.sos = vocab_size - 1 self.eos = vocab_size - 1 self.vocab_size = vocab_size self.ignore_id = ignore_id self.ctc_weight = ctc_weight self.reverse_weight = reverse_weight self.encoder = encoder self.decoder = decoder self.ctc = ctc self.criterion_att = LabelSmoothingLoss( size=vocab_size, padding_idx=ignore_id, smoothing=lsm_weight, normalize_length=length_normalized_loss, ) def forward( self, speech: paddle.Tensor, speech_lengths: paddle.Tensor, text: paddle.Tensor, text_lengths: paddle.Tensor, ) -> Tuple[Optional[paddle.Tensor], Optional[paddle.Tensor], Optional[ paddle.Tensor]]: """Frontend + Encoder + Decoder + Calc loss Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) text: (Batch, Length) text_lengths: (Batch,) Returns: total_loss, attention_loss, ctc_loss """ assert text_lengths.dim() == 1, text_lengths.shape # Check that batch_size is unified assert (speech.shape[0] == speech_lengths.shape[0] == text.shape[0] == text_lengths.shape[0]), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape) # 1. Encoder start = time.time() encoder_out, encoder_mask = self.encoder(speech, speech_lengths) encoder_time = time.time() - start #logger.debug(f"encoder time: {encoder_time}") #TODO(Hui Zhang): sum not support bool type #encoder_out_lens = encoder_mask.squeeze(1).sum(1) #[B, 1, T] -> [B] encoder_out_lens = encoder_mask.squeeze(1).cast(paddle.int64).sum( 1) #[B, 1, T] -> [B] # 2a. Attention-decoder branch loss_att = None if self.ctc_weight != 1.0: start = time.time() loss_att, acc_att = self._calc_att_loss(encoder_out, encoder_mask, text, text_lengths) decoder_time = time.time() - start #logger.debug(f"decoder time: {decoder_time}") # 2b. CTC branch loss_ctc = None if self.ctc_weight != 0.0: start = time.time() loss_ctc = self.ctc(encoder_out, encoder_out_lens, text, text_lengths) ctc_time = time.time() - start #logger.debug(f"ctc time: {ctc_time}") if loss_ctc is None: loss = loss_att elif loss_att is None: loss = loss_ctc else: loss = self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att return loss, loss_att, loss_ctc def _calc_att_loss( self, encoder_out: paddle.Tensor, encoder_mask: paddle.Tensor, ys_pad: paddle.Tensor, ys_pad_lens: paddle.Tensor, ) -> Tuple[paddle.Tensor, float]: """Calc attention loss. Args: encoder_out (paddle.Tensor): [B, Tmax, D] encoder_mask (paddle.Tensor): [B, 1, Tmax] ys_pad (paddle.Tensor): [B, Umax] ys_pad_lens (paddle.Tensor): [B] Returns: Tuple[paddle.Tensor, float]: attention_loss, accuracy rate """ ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) ys_in_lens = ys_pad_lens + 1 r_ys_pad = reverse_pad_list(ys_pad, ys_pad_lens, float(self.ignore_id)) r_ys_in_pad, r_ys_out_pad = add_sos_eos(r_ys_pad, self.sos, self.eos, self.ignore_id) # 1. Forward decoder decoder_out, r_decoder_out, _ = self.decoder( encoder_out, encoder_mask, ys_in_pad, ys_in_lens, r_ys_in_pad, self.reverse_weight) # 2. Compute attention loss loss_att = self.criterion_att(decoder_out, ys_out_pad) r_loss_att = paddle.to_tensor(0.0) if self.reverse_weight > 0.0: r_loss_att = self.criterion_att(r_decoder_out, r_ys_out_pad) loss_att = loss_att * (1 - self.reverse_weight ) + r_loss_att * self.reverse_weight acc_att = th_accuracy( decoder_out.view(-1, self.vocab_size), ys_out_pad, ignore_label=self.ignore_id, ) return loss_att, acc_att def _forward_encoder( self, speech: paddle.Tensor, speech_lengths: paddle.Tensor, decoding_chunk_size: int=-1, num_decoding_left_chunks: int=-1, simulate_streaming: bool=False, ) -> Tuple[paddle.Tensor, paddle.Tensor]: """Encoder pass. Args: speech (paddle.Tensor): [B, Tmax, D] speech_lengths (paddle.Tensor): [B] decoding_chunk_size (int, optional): chuck size. Defaults to -1. num_decoding_left_chunks (int, optional): nums chunks. Defaults to -1. simulate_streaming (bool, optional): streaming or not. Defaults to False. Returns: Tuple[paddle.Tensor, paddle.Tensor]: encoder hiddens (B, Tmax, D), encoder hiddens mask (B, 1, Tmax). """ # Let's assume B = batch_size # 1. Encoder if simulate_streaming and decoding_chunk_size > 0: encoder_out, encoder_mask = self.encoder.forward_chunk_by_chunk( speech, decoding_chunk_size=decoding_chunk_size, num_decoding_left_chunks=num_decoding_left_chunks ) # (B, maxlen, encoder_dim) else: encoder_out, encoder_mask = self.encoder( speech, speech_lengths, decoding_chunk_size=decoding_chunk_size, num_decoding_left_chunks=num_decoding_left_chunks ) # (B, maxlen, encoder_dim) return encoder_out, encoder_mask def recognize( self, speech: paddle.Tensor, speech_lengths: paddle.Tensor, beam_size: int=10, decoding_chunk_size: int=-1, num_decoding_left_chunks: int=-1, simulate_streaming: bool=False, ) -> paddle.Tensor: """ Apply beam search on attention decoder Args: speech (paddle.Tensor): (batch, max_len, feat_dim) speech_length (paddle.Tensor): (batch, ) beam_size (int): beam size for beam search decoding_chunk_size (int): decoding chunk for dynamic chunk trained model. <0: for decoding, use full chunk. >0: for decoding, use fixed chunk size as set. 0: used for training, it's prohibited here simulate_streaming (bool): whether do encoder forward in a streaming fashion Returns: paddle.Tensor: decoding result, (batch, max_result_len) """ assert speech.shape[0] == speech_lengths.shape[0] assert decoding_chunk_size != 0 device = speech.place batch_size = speech.shape[0] # Let's assume B = batch_size and N = beam_size # 1. Encoder encoder_out, encoder_mask = self._forward_encoder( speech, speech_lengths, decoding_chunk_size, num_decoding_left_chunks, simulate_streaming) # (B, maxlen, encoder_dim) maxlen = encoder_out.shape[1] encoder_dim = encoder_out.shape[2] running_size = batch_size * beam_size encoder_out = encoder_out.unsqueeze(1).repeat(1, beam_size, 1, 1).view( running_size, maxlen, encoder_dim) # (B*N, maxlen, encoder_dim) encoder_mask = encoder_mask.unsqueeze(1).repeat( 1, beam_size, 1, 1).view(running_size, 1, maxlen) # (B*N, 1, max_len) hyps = paddle.ones( [running_size, 1], dtype=paddle.long).fill_(self.sos) # (B*N, 1) # log scale score scores = paddle.to_tensor( [0.0] + [-float('inf')] * (beam_size - 1), dtype=paddle.float) scores = scores.to(device).repeat(batch_size).unsqueeze(1).to( device) # (B*N, 1) end_flag = paddle.zeros_like(scores, dtype=paddle.bool) # (B*N, 1) cache: Optional[List[paddle.Tensor]] = None # 2. Decoder forward step by step for i in range(1, maxlen + 1): # Stop if all batch and all beam produce eos # TODO(Hui Zhang): if end_flag.sum() == running_size: if end_flag.cast(paddle.int64).sum() == running_size: break # 2.1 Forward decoder step hyps_mask = subsequent_mask(i).unsqueeze(0).repeat( running_size, 1, 1).to(device) # (B*N, i, i) # logp: (B*N, vocab) logp, cache = self.decoder.forward_one_step( encoder_out, encoder_mask, hyps, hyps_mask, cache) # 2.2 First beam prune: select topk best prob at current time top_k_logp, top_k_index = logp.topk(beam_size) # (B*N, N) top_k_logp = mask_finished_scores(top_k_logp, end_flag) top_k_index = mask_finished_preds(top_k_index, end_flag, self.eos) # 2.3 Seconde beam prune: select topk score with history scores = scores + top_k_logp # (B*N, N), broadcast add scores = scores.view(batch_size, beam_size * beam_size) # (B, N*N) scores, offset_k_index = scores.topk(k=beam_size) # (B, N) scores = scores.view(-1, 1) # (B*N, 1) # 2.4. Compute base index in top_k_index, # regard top_k_index as (B*N*N),regard offset_k_index as (B*N), # then find offset_k_index in top_k_index base_k_index = paddle.arange(batch_size).view(-1, 1).repeat( 1, beam_size) # (B, N) base_k_index = base_k_index * beam_size * beam_size best_k_index = base_k_index.view(-1) + offset_k_index.view( -1) # (B*N) # 2.5 Update best hyps best_k_pred = paddle.index_select( top_k_index.view(-1), index=best_k_index, axis=0) # (B*N) best_hyps_index = best_k_index // beam_size last_best_k_hyps = paddle.index_select( hyps, index=best_hyps_index, axis=0) # (B*N, i) hyps = paddle.cat( (last_best_k_hyps, best_k_pred.view(-1, 1)), dim=1) # (B*N, i+1) # 2.6 Update end flag end_flag = paddle.equal(hyps[:, -1], self.eos).view(-1, 1) # 3. Select best of best scores = scores.view(batch_size, beam_size) # TODO: length normalization best_index = paddle.argmax(scores, axis=-1).long() # (B) best_hyps_index = best_index + paddle.arange( batch_size, dtype=paddle.long) * beam_size best_hyps = paddle.index_select(hyps, index=best_hyps_index, axis=0) best_hyps = best_hyps[:, 1:] return best_hyps def ctc_greedy_search( self, speech: paddle.Tensor, speech_lengths: paddle.Tensor, decoding_chunk_size: int=-1, num_decoding_left_chunks: int=-1, simulate_streaming: bool=False, ) -> List[List[int]]: """ Apply CTC greedy search Args: speech (paddle.Tensor): (batch, max_len, feat_dim) speech_length (paddle.Tensor): (batch, ) beam_size (int): beam size for beam search decoding_chunk_size (int): decoding chunk for dynamic chunk trained model. <0: for decoding, use full chunk. >0: for decoding, use fixed chunk size as set. 0: used for training, it's prohibited here simulate_streaming (bool): whether do encoder forward in a streaming fashion Returns: List[List[int]]: best path result """ assert speech.shape[0] == speech_lengths.shape[0] assert decoding_chunk_size != 0 batch_size = speech.shape[0] # Let's assume B = batch_size # encoder_out: (B, maxlen, encoder_dim) # encoder_mask: (B, 1, Tmax) encoder_out, encoder_mask = self._forward_encoder( speech, speech_lengths, decoding_chunk_size, num_decoding_left_chunks, simulate_streaming) maxlen = encoder_out.shape[1] # (TODO Hui Zhang): bool no support reduce_sum # encoder_out_lens = encoder_mask.squeeze(1).sum(1) encoder_out_lens = encoder_mask.squeeze(1).astype(paddle.int).sum(1) ctc_probs = self.ctc.log_softmax(encoder_out) # (B, maxlen, vocab_size) topk_prob, topk_index = ctc_probs.topk(1, axis=2) # (B, maxlen, 1) topk_index = topk_index.view(batch_size, maxlen) # (B, maxlen) pad_mask = make_pad_mask(encoder_out_lens) # (B, maxlen) topk_index = topk_index.masked_fill_(pad_mask, self.eos) # (B, maxlen) hyps = [hyp.tolist() for hyp in topk_index] hyps = [remove_duplicates_and_blank(hyp) for hyp in hyps] return hyps def _ctc_prefix_beam_search( self, speech: paddle.Tensor, speech_lengths: paddle.Tensor, beam_size: int, decoding_chunk_size: int=-1, num_decoding_left_chunks: int=-1, simulate_streaming: bool=False, blank_id: int=0, ) -> Tuple[List[Tuple[int, float]], paddle.Tensor]: """ CTC prefix beam search inner implementation Args: speech (paddle.Tensor): (batch, max_len, feat_dim) speech_length (paddle.Tensor): (batch, ) beam_size (int): beam size for beam search decoding_chunk_size (int): decoding chunk for dynamic chunk trained model. <0: for decoding, use full chunk. >0: for decoding, use fixed chunk size as set. 0: used for training, it's prohibited here simulate_streaming (bool): whether do encoder forward in a streaming fashion Returns: List[Tuple[int, float]]: nbest results, (N,1), (text, likelihood) paddle.Tensor: encoder output, (1, max_len, encoder_dim), it will be used for rescoring in attention rescoring mode """ assert speech.shape[0] == speech_lengths.shape[0] assert decoding_chunk_size != 0 batch_size = speech.shape[0] # For CTC prefix beam search, we only support batch_size=1 assert batch_size == 1 # Let's assume B = batch_size and N = beam_size # 1. Encoder forward and get CTC score encoder_out, encoder_mask = self._forward_encoder( speech, speech_lengths, decoding_chunk_size, num_decoding_left_chunks, simulate_streaming) # (B, maxlen, encoder_dim) maxlen = encoder_out.shape[1] ctc_probs = self.ctc.log_softmax(encoder_out) # (1, maxlen, vocab_size) ctc_probs = ctc_probs.squeeze(0) # cur_hyps: (prefix, (blank_ending_score, none_blank_ending_score)) # blank_ending_score and none_blank_ending_score in ln domain cur_hyps = [(tuple(), (0.0, -float('inf')))] # 2. CTC beam search step by step for t in range(0, maxlen): logp = ctc_probs[t] # (vocab_size,) # key: prefix, value (pb, pnb), default value(-inf, -inf) next_hyps = defaultdict(lambda: (-float('inf'), -float('inf'))) # 2.1 First beam prune: select topk best top_k_logp, top_k_index = logp.topk(beam_size) # (beam_size,) for s in top_k_index: s = s.item() ps = logp[s].item() for prefix, (pb, pnb) in cur_hyps: last = prefix[-1] if len(prefix) > 0 else None if s == blank_id: # blank n_pb, n_pnb = next_hyps[prefix] n_pb = log_add([n_pb, pb + ps, pnb + ps]) next_hyps[prefix] = (n_pb, n_pnb) elif s == last: # Update *ss -> *s; n_pb, n_pnb = next_hyps[prefix] n_pnb = log_add([n_pnb, pnb + ps]) next_hyps[prefix] = (n_pb, n_pnb) # Update *s-s -> *ss, - is for blank n_prefix = prefix + (s, ) n_pb, n_pnb = next_hyps[n_prefix] n_pnb = log_add([n_pnb, pb + ps]) next_hyps[n_prefix] = (n_pb, n_pnb) else: n_prefix = prefix + (s, ) n_pb, n_pnb = next_hyps[n_prefix] n_pnb = log_add([n_pnb, pb + ps, pnb + ps]) next_hyps[n_prefix] = (n_pb, n_pnb) # 2.2 Second beam prune next_hyps = sorted( next_hyps.items(), key=lambda x: log_add(list(x[1])), reverse=True) cur_hyps = next_hyps[:beam_size] hyps = [(y[0], log_add([y[1][0], y[1][1]])) for y in cur_hyps] return hyps, encoder_out def ctc_prefix_beam_search( self, speech: paddle.Tensor, speech_lengths: paddle.Tensor, beam_size: int, decoding_chunk_size: int=-1, num_decoding_left_chunks: int=-1, simulate_streaming: bool=False, ) -> List[int]: """ Apply CTC prefix beam search Args: speech (paddle.Tensor): (batch, max_len, feat_dim) speech_length (paddle.Tensor): (batch, ) beam_size (int): beam size for beam search decoding_chunk_size (int): decoding chunk for dynamic chunk trained model. <0: for decoding, use full chunk. >0: for decoding, use fixed chunk size as set. 0: used for training, it's prohibited here simulate_streaming (bool): whether do encoder forward in a streaming fashion Returns: List[int]: CTC prefix beam search nbest results """ hyps, _ = self._ctc_prefix_beam_search( speech, speech_lengths, beam_size, decoding_chunk_size, num_decoding_left_chunks, simulate_streaming) return hyps[0][0] def attention_rescoring( self, speech: paddle.Tensor, speech_lengths: paddle.Tensor, beam_size: int, decoding_chunk_size: int=-1, num_decoding_left_chunks: int=-1, ctc_weight: float=0.0, simulate_streaming: bool=False, reverse_weight: float=0.0, ) -> List[int]: """ Apply attention rescoring decoding, CTC prefix beam search is applied first to get nbest, then we resoring the nbest on attention decoder with corresponding encoder out Args: speech (paddle.Tensor): (batch, max_len, feat_dim) speech_length (paddle.Tensor): (batch, ) beam_size (int): beam size for beam search decoding_chunk_size (int): decoding chunk for dynamic chunk trained model. <0: for decoding, use full chunk. >0: for decoding, use fixed chunk size as set. 0: used for training, it's prohibited here simulate_streaming (bool): whether do encoder forward in a streaming fashion Returns: List[int]: Attention rescoring result """ assert speech.shape[0] == speech_lengths.shape[0] assert decoding_chunk_size != 0 if reverse_weight > 0.0: # decoder should be a bitransformer decoder if reverse_weight > 0.0 assert hasattr(self.decoder, 'right_decoder') device = speech.place batch_size = speech.shape[0] # For attention rescoring we only support batch_size=1 assert batch_size == 1 # len(hyps) = beam_size, encoder_out: (1, maxlen, encoder_dim) hyps, encoder_out = self._ctc_prefix_beam_search( speech, speech_lengths, beam_size, decoding_chunk_size, num_decoding_left_chunks, simulate_streaming) assert len(hyps) == beam_size hyp_list = [] for hyp in hyps: hyp_content = hyp[0] # Prevent the hyp is empty if len(hyp_content) == 0: hyp_content = (self.ctc.blank_id, ) hyp_content = paddle.to_tensor( hyp_content, place=device, dtype=paddle.long) hyp_list.append(hyp_content) hyps_pad = pad_sequence(hyp_list, True, self.ignore_id) ori_hyps_pad = hyps_pad hyps_lens = paddle.to_tensor( [len(hyp[0]) for hyp in hyps], place=device, dtype=paddle.long) # (beam_size,) hyps_pad, _ = add_sos_eos(hyps_pad, self.sos, self.eos, self.ignore_id) hyps_lens = hyps_lens + 1 # Add at begining encoder_out = encoder_out.repeat(beam_size, 1, 1) encoder_mask = paddle.ones( (beam_size, 1, encoder_out.shape[1]), dtype=paddle.bool) r_hyps_pad = st_reverse_pad_list(ori_hyps_pad, hyps_lens - 1, self.sos, self.eos) decoder_out, r_decoder_out, _ = self.decoder( encoder_out, encoder_mask, hyps_pad, hyps_lens, r_hyps_pad, reverse_weight) # (beam_size, max_hyps_len, vocab_size) # ctc score in ln domain decoder_out = paddle.nn.functional.log_softmax(decoder_out, axis=-1) decoder_out = decoder_out.numpy() # r_decoder_out will be 0.0, if reverse_weight is 0.0 or decoder is a # conventional transformer decoder. r_decoder_out = paddle.nn.functional.log_softmax(r_decoder_out, axis=-1) r_decoder_out = r_decoder_out.numpy() # Only use decoder score for rescoring best_score = -float('inf') best_index = 0 # hyps is List[(Text=List[int], Score=float)], len(hyps)=beam_size for i, hyp in enumerate(hyps): score = 0.0 for j, w in enumerate(hyp[0]): score += decoder_out[i][j][w] # last decoder output token is `eos`, for laste decoder input token. score += decoder_out[i][len(hyp[0])][self.eos] if reverse_weight > 0: r_score = 0.0 for j, w in enumerate(hyp[0]): r_score += r_decoder_out[i][len(hyp[0]) - j - 1][w] r_score += r_decoder_out[i][len(hyp[0])][self.eos] score = score * (1 - reverse_weight) + r_score * reverse_weight # add ctc score (which in ln domain) score += hyp[1] * ctc_weight if score > best_score: best_score = score best_index = i return hyps[best_index][0] #@jit.to_static def subsampling_rate(self) -> int: """ Export interface for c++ call, return subsampling_rate of the model """ return self.encoder.embed.subsampling_rate #@jit.to_static def right_context(self) -> int: """ Export interface for c++ call, return right_context of the model """ return self.encoder.embed.right_context #@jit.to_static def sos_symbol(self) -> int: """ Export interface for c++ call, return sos symbol id of the model """ return self.sos #@jit.to_static def eos_symbol(self) -> int: """ Export interface for c++ call, return eos symbol id of the model """ return self.eos @jit.to_static def forward_encoder_chunk( self, xs: paddle.Tensor, offset: int, required_cache_size: int, att_cache: paddle.Tensor=paddle.zeros([0, 0, 0, 0]), cnn_cache: paddle.Tensor=paddle.zeros([0, 0, 0, 0]) ) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]: """ Export interface for c++ call, give input chunk xs, and return output from time 0 to current chunk. Args: xs (paddle.Tensor): chunk input, with shape (b=1, time, mel-dim), where `time == (chunk_size - 1) * subsample_rate + \ subsample.right_context + 1` offset (int): current offset in encoder output time stamp required_cache_size (int): cache size required for next chunk compuation >=0: actual cache size <0: means all history cache is required att_cache (paddle.Tensor): cache tensor for KEY & VALUE in transformer/conformer attention, with shape (elayers, head, cache_t1, d_k * 2), where `head * d_k == hidden-dim` and `cache_t1 == chunk_size * num_decoding_left_chunks`. `d_k * 2` for att key & value. cnn_cache (paddle.Tensor): cache tensor for cnn_module in conformer, (elayers, b=1, hidden-dim, cache_t2), where `cache_t2 == cnn.lorder - 1`. Returns: paddle.Tensor: output of current input xs, with shape (b=1, chunk_size, hidden-dim). paddle.Tensor: new attention cache required for next chunk, with dynamic shape (elayers, head, T(?), d_k * 2) depending on required_cache_size. paddle.Tensor: new conformer cnn cache required for next chunk, with same shape as the original cnn_cache. """ return self.encoder.forward_chunk(xs, offset, required_cache_size, att_cache, cnn_cache) # @jit.to_static def ctc_activation(self, xs: paddle.Tensor) -> paddle.Tensor: """ Export interface for c++ call, apply linear transform and log softmax before ctc Args: xs (paddle.Tensor): encoder output, (B, T, D) Returns: paddle.Tensor: activation before ctc """ return self.ctc.log_softmax(xs) # @jit.to_static def is_bidirectional_decoder(self) -> bool: """ Returns: paddle.Tensor: decoder output """ if hasattr(self.decoder, 'right_decoder'): return True else: return False # @jit.to_static def forward_attention_decoder( self, hyps: paddle.Tensor, hyps_lens: paddle.Tensor, encoder_out: paddle.Tensor, reverse_weight: float=0.0, ) -> paddle.Tensor: """ Export interface for c++ call, forward decoder with multiple hypothesis from ctc prefix beam search and one encoder output Args: hyps (paddle.Tensor): hyps from ctc prefix beam search, already pad sos at the begining, (B, T) hyps_lens (paddle.Tensor): length of each hyp in hyps, (B) encoder_out (paddle.Tensor): corresponding encoder output, (B=1, T, D) Returns: paddle.Tensor: decoder output, (B, L) """ assert encoder_out.shape[0] == 1 num_hyps = hyps.shape[0] assert hyps_lens.shape[0] == num_hyps encoder_out = encoder_out.repeat(num_hyps, 1, 1) # (B, 1, T) encoder_mask = paddle.ones( [num_hyps, 1, encoder_out.shape[1]], dtype=paddle.bool) # input for right to left decoder # this hyps_lens has count token, we need minus it. r_hyps_lens = hyps_lens - 1 # this hyps has included token, so it should be # convert the original hyps. r_hyps = hyps[:, 1:] # (num_hyps, max_hyps_len, vocab_size) r_hyps = st_reverse_pad_list(r_hyps, r_hyps_lens, self.sos, self.eos) decoder_out, r_decoder_out, _ = self.decoder( encoder_out, encoder_mask, hyps, hyps_lens, r_hyps, reverse_weight) decoder_out = paddle.nn.functional.log_softmax(decoder_out, axis=-1) r_decoder_out = paddle.nn.functional.log_softmax(r_decoder_out, axis=-1) return decoder_out, r_decoder_out @paddle.no_grad() def decode(self, feats: paddle.Tensor, feats_lengths: paddle.Tensor, text_feature: Dict[str, int], decoding_method: str, beam_size: int, ctc_weight: float=0.0, decoding_chunk_size: int=-1, num_decoding_left_chunks: int=-1, simulate_streaming: bool=False, reverse_weight: float=0.0): """u2 decoding. Args: feats (Tensor): audio features, (B, T, D) feats_lengths (Tensor): (B) text_feature (TextFeaturizer): text feature object. decoding_method (str): decoding mode, e.g. 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring' beam_size (int): beam size for search ctc_weight (float, optional): ctc weight for attention rescoring decode mode. Defaults to 0.0. decoding_chunk_size (int, optional): decoding chunk size. Defaults to -1. <0: for decoding, use full chunk. >0: for decoding, use fixed chunk size as set. 0: used for training, it's prohibited here. num_decoding_left_chunks (int, optional): number of left chunks for decoding. Defaults to -1. simulate_streaming (bool, optional): simulate streaming inference. Defaults to False. Raises: ValueError: when not support decoding_method. Returns: List[List[int]]: transcripts. """ batch_size = feats.shape[0] if decoding_method in ['ctc_prefix_beam_search', 'attention_rescoring'] and batch_size > 1: logger.error( f'decoding mode {decoding_method} must be running with batch_size == 1' ) logger.error(f"current batch_size is {batch_size}") sys.exit(1) if decoding_method == 'attention': hyps = self.recognize( feats, feats_lengths, beam_size=beam_size, decoding_chunk_size=decoding_chunk_size, num_decoding_left_chunks=num_decoding_left_chunks, simulate_streaming=simulate_streaming) hyps = [hyp.tolist() for hyp in hyps] elif decoding_method == 'ctc_greedy_search': hyps = self.ctc_greedy_search( feats, feats_lengths, decoding_chunk_size=decoding_chunk_size, num_decoding_left_chunks=num_decoding_left_chunks, simulate_streaming=simulate_streaming) # ctc_prefix_beam_search and attention_rescoring only return one # result in List[int], change it to List[List[int]] for compatible # with other batch decoding mode elif decoding_method == 'ctc_prefix_beam_search': assert feats.shape[0] == 1 hyp = self.ctc_prefix_beam_search( feats, feats_lengths, beam_size, decoding_chunk_size=decoding_chunk_size, num_decoding_left_chunks=num_decoding_left_chunks, simulate_streaming=simulate_streaming) hyps = [hyp] elif decoding_method == 'attention_rescoring': assert feats.shape[0] == 1 hyp = self.attention_rescoring( feats, feats_lengths, beam_size, decoding_chunk_size=decoding_chunk_size, num_decoding_left_chunks=num_decoding_left_chunks, ctc_weight=ctc_weight, simulate_streaming=simulate_streaming, reverse_weight=reverse_weight) hyps = [hyp] else: raise ValueError(f"Not support decoding method: {decoding_method}") res = [text_feature.defeaturize(hyp) for hyp in hyps] res_tokenids = [hyp for hyp in hyps] return res, res_tokenids class U2DecodeModel(U2BaseModel): def scorers(self): """Scorers.""" return dict( decoder=self.decoder, ctc=CTCPrefixScorer(self.ctc, self.eos)) def encode(self, x): """Encode acoustic features. :param ndarray x: source acoustic feature (T, D) :return: encoder outputs :rtype: paddle.Tensor """ self.eval() x = paddle.to_tensor(x).unsqueeze(0) ilen = paddle.shape(x)[1] enc_output, _ = self._forward_encoder(x, ilen) return enc_output.squeeze(0) class U2Model(U2DecodeModel): def __init__(self, configs: dict): model_conf = configs.get('model_conf', dict()) init_type = model_conf.get("init_type", None) with DefaultInitializerContext(init_type): vocab_size, encoder, decoder, ctc = U2Model._init_from_config( configs) super().__init__( vocab_size=vocab_size, encoder=encoder, decoder=decoder, ctc=ctc, **model_conf) @classmethod def _init_from_config(cls, configs: dict): """init sub module for model. Args: configs (dict): config dict. Raises: ValueError: raise when using not support encoder type. Returns: int, nn.Layer, nn.Layer, nn.Layer: vocab size, encoder, decoder, ctc """ # cmvn if 'cmvn_file' in configs and configs['cmvn_file']: mean, istd = load_cmvn(configs['cmvn_file'], configs['cmvn_file_type']) global_cmvn = GlobalCMVN( paddle.to_tensor(mean, dtype=paddle.float), paddle.to_tensor(istd, dtype=paddle.float)) else: global_cmvn = None # input & output dim input_dim = configs['input_dim'] vocab_size = configs['output_dim'] assert input_dim != 0, input_dim assert vocab_size != 0, vocab_size # encoder encoder_type = configs.get('encoder', 'transformer') logger.debug(f"U2 Encoder type: {encoder_type}") if encoder_type == 'transformer': encoder = TransformerEncoder( input_dim, global_cmvn=global_cmvn, **configs['encoder_conf']) elif encoder_type == 'conformer': encoder = ConformerEncoder( input_dim, global_cmvn=global_cmvn, **configs['encoder_conf']) else: raise ValueError(f"not support encoder type:{encoder_type}") # decoder decoder_type = configs.get('decoder', 'transformer') logger.debug(f"U2 Decoder type: {decoder_type}") if decoder_type == 'transformer': decoder = TransformerDecoder(vocab_size, encoder.output_size(), **configs['decoder_conf']) elif decoder_type == 'bitransformer': assert 0.0 < configs['model_conf']['reverse_weight'] < 1.0 assert configs['decoder_conf']['r_num_blocks'] > 0 decoder = BiTransformerDecoder(vocab_size, encoder.output_size(), **configs['decoder_conf']) else: raise ValueError(f"not support decoder type:{decoder_type}") # ctc decoder and ctc loss model_conf = configs.get('model_conf', dict()) dropout_rate = model_conf.get('ctc_dropout_rate', 0.0) grad_norm_type = model_conf.get('ctc_grad_norm_type', None) ctc = CTCDecoderBase( odim=vocab_size, enc_n_units=encoder.output_size(), blank_id=0, dropout_rate=dropout_rate, reduction=True, # sum batch_average=True, # sum / batch_size grad_norm_type=grad_norm_type) return vocab_size, encoder, decoder, ctc @classmethod def from_config(cls, configs: dict): """init model. Args: configs (dict): config dict. Raises: ValueError: raise when using not support encoder type. Returns: nn.Layer: U2Model """ model = cls(configs) return model @classmethod def from_pretrained(cls, dataloader, config, checkpoint_path): """Build a DeepSpeech2Model model from a pretrained model. Args: dataloader (paddle.io.DataLoader): not used. config (yacs.config.CfgNode): model configs checkpoint_path (Path or str): the path of pretrained model checkpoint, without extension name Returns: DeepSpeech2Model: The model built from pretrained result. """ with UpdateConfig(config): config.input_dim = dataloader.feat_dim config.output_dim = dataloader.vocab_size model = cls.from_config(config) if checkpoint_path: infos = checkpoint.Checkpoint().load_parameters( model, checkpoint_path=checkpoint_path) logger.debug(f"checkpoint info: {infos}") layer_tools.summary(model) return model class U2InferModel(U2Model): def __init__(self, configs: dict): super().__init__(configs) def forward(self, feats, feats_lengths, decoding_chunk_size=-1, num_decoding_left_chunks=-1, simulate_streaming=False): """export model function Args: feats (Tensor): [B, T, D] feats_lengths (Tensor): [B] Returns: List[List[int]]: best path result """ return self.ctc_greedy_search( feats, feats_lengths, decoding_chunk_size=decoding_chunk_size, num_decoding_left_chunks=num_decoding_left_chunks, simulate_streaming=simulate_streaming)