# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Modified from espnet(https://github.com/espnet/espnet) """MelGAN Modules.""" from typing import Any from typing import Dict from typing import List import numpy as np import paddle from paddle import nn from paddlespeech.t2s.modules.activation import get_activation from paddlespeech.t2s.modules.causal_conv import CausalConv1D from paddlespeech.t2s.modules.causal_conv import CausalConv1DTranspose from paddlespeech.t2s.modules.nets_utils import initialize from paddlespeech.t2s.modules.pqmf import PQMF from paddlespeech.t2s.modules.residual_stack import ResidualStack class MelGANGenerator(nn.Layer): """MelGAN generator module.""" def __init__( self, in_channels: int=80, out_channels: int=1, kernel_size: int=7, channels: int=512, bias: bool=True, upsample_scales: List[int]=[8, 8, 2, 2], stack_kernel_size: int=3, stacks: int=3, nonlinear_activation: str="leakyrelu", nonlinear_activation_params: Dict[str, Any]={"negative_slope": 0.2}, pad: str="Pad1D", pad_params: Dict[str, Any]={"mode": "reflect"}, use_final_nonlinear_activation: bool=True, use_weight_norm: bool=True, use_causal_conv: bool=False, init_type: str="xavier_uniform", ): """Initialize MelGANGenerator module. Parameters ---------- in_channels : int Number of input channels. out_channels : int Number of output channels, the number of sub-band is out_channels in multi-band melgan. kernel_size : int Kernel size of initial and final conv layer. channels : int Initial number of channels for conv layer. bias : bool Whether to add bias parameter in convolution layers. upsample_scales : List[int] List of upsampling scales. stack_kernel_size : int Kernel size of dilated conv layers in residual stack. stacks : int Number of stacks in a single residual stack. nonlinear_activation : Optional[str], optional Non linear activation in upsample network, by default None nonlinear_activation_params : Dict[str, Any], optional Parameters passed to the linear activation in the upsample network, by default {} pad : str Padding function module name before dilated convolution layer. pad_params : dict Hyperparameters for padding function. use_final_nonlinear_activation : nn.Layer Activation function for the final layer. use_weight_norm : bool Whether to use weight norm. If set to true, it will be applied to all of the conv layers. use_causal_conv : bool Whether to use causal convolution. """ super().__init__() # initialize parameters initialize(self, init_type) # for compatibility nonlinear_activation = nonlinear_activation.lower() # check hyper parameters is valid assert channels >= np.prod(upsample_scales) assert channels % (2**len(upsample_scales)) == 0 if not use_causal_conv: assert (kernel_size - 1 ) % 2 == 0, "Not support even number kernel size." layers = [] if not use_causal_conv: layers += [ getattr(paddle.nn, pad)((kernel_size - 1) // 2, **pad_params), nn.Conv1D(in_channels, channels, kernel_size, bias_attr=bias), ] else: layers += [ CausalConv1D( in_channels, channels, kernel_size, bias=bias, pad=pad, pad_params=pad_params, ), ] for i, upsample_scale in enumerate(upsample_scales): # add upsampling layer layers += [ get_activation(nonlinear_activation, **nonlinear_activation_params) ] if not use_causal_conv: layers += [ nn.Conv1DTranspose( channels // (2**i), channels // (2**(i + 1)), upsample_scale * 2, stride=upsample_scale, padding=upsample_scale // 2 + upsample_scale % 2, output_padding=upsample_scale % 2, bias_attr=bias, ) ] else: layers += [ CausalConv1DTranspose( channels // (2**i), channels // (2**(i + 1)), upsample_scale * 2, stride=upsample_scale, bias=bias, ) ] # add residual stack for j in range(stacks): layers += [ ResidualStack( kernel_size=stack_kernel_size, channels=channels // (2**(i + 1)), dilation=stack_kernel_size**j, bias=bias, nonlinear_activation=nonlinear_activation, nonlinear_activation_params=nonlinear_activation_params, pad=pad, pad_params=pad_params, use_causal_conv=use_causal_conv, ) ] # add final layer layers += [ get_activation(nonlinear_activation, **nonlinear_activation_params) ] if not use_causal_conv: layers += [ getattr(nn, pad)((kernel_size - 1) // 2, **pad_params), nn.Conv1D( channels // (2**(i + 1)), out_channels, kernel_size, bias_attr=bias), ] else: layers += [ CausalConv1D( channels // (2**(i + 1)), out_channels, kernel_size, bias=bias, pad=pad, pad_params=pad_params, ), ] if use_final_nonlinear_activation: layers += [nn.Tanh()] # define the model as a single function self.melgan = nn.Sequential(*layers) nn.initializer.set_global_initializer(None) # apply weight norm if use_weight_norm: self.apply_weight_norm() # reset parameters self.reset_parameters() # initialize pqmf for multi-band melgan inference if out_channels > 1: self.pqmf = PQMF(subbands=out_channels) else: self.pqmf = None def forward(self, c): """Calculate forward propagation. Parameters ---------- c : Tensor Input tensor (B, in_channels, T). Returns ---------- Tensor Output tensor (B, out_channels, T ** prod(upsample_scales)). """ out = self.melgan(c) return out def apply_weight_norm(self): """Recursively apply weight normalization to all the Convolution layers in the sublayers. """ def _apply_weight_norm(layer): if isinstance(layer, (nn.Conv1D, nn.Conv2D, nn.Conv1DTranspose)): nn.utils.weight_norm(layer) self.apply(_apply_weight_norm) def remove_weight_norm(self): """Recursively remove weight normalization from all the Convolution layers in the sublayers. """ def _remove_weight_norm(layer): try: nn.utils.remove_weight_norm(layer) except ValueError: pass self.apply(_remove_weight_norm) def reset_parameters(self): """Reset parameters. This initialization follows official implementation manner. https://github.com/descriptinc/melgan-neurips/blob/master/mel2wav/modules.py """ # 定义参数为float的正态分布。 dist = paddle.distribution.Normal(loc=0.0, scale=0.02) def _reset_parameters(m): if isinstance(m, nn.Conv1D) or isinstance(m, nn.Conv1DTranspose): w = dist.sample(m.weight.shape) m.weight.set_value(w) self.apply(_reset_parameters) def inference(self, c): """Perform inference. Parameters ---------- c : Union[Tensor, ndarray] Input tensor (T, in_channels). Returns ---------- Tensor Output tensor (out_channels*T ** prod(upsample_scales), 1). """ # pseudo batch c = c.transpose([1, 0]).unsqueeze(0) # (B, out_channels, T ** prod(upsample_scales) out = self.melgan(c) if self.pqmf is not None: # (B, 1, out_channels * T ** prod(upsample_scales) out = self.pqmf(out) out = out.squeeze(0).transpose([1, 0]) return out class MelGANDiscriminator(nn.Layer): """MelGAN discriminator module.""" def __init__( self, in_channels: int=1, out_channels: int=1, kernel_sizes: List[int]=[5, 3], channels: int=16, max_downsample_channels: int=1024, bias: bool=True, downsample_scales: List[int]=[4, 4, 4, 4], nonlinear_activation: str="leakyrelu", nonlinear_activation_params: Dict[str, Any]={"negative_slope": 0.2}, pad: str="Pad1D", pad_params: Dict[str, Any]={"mode": "reflect"}, init_type: str="xavier_uniform", ): """Initilize MelGAN discriminator module. Parameters ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. kernel_sizes : List[int] List of two kernel sizes. The prod will be used for the first conv layer, and the first and the second kernel sizes will be used for the last two layers. For example if kernel_sizes = [5, 3], the first layer kernel size will be 5 * 3 = 15, the last two layers' kernel size will be 5 and 3, respectively. channels : int Initial number of channels for conv layer. max_downsample_channels : int Maximum number of channels for downsampling layers. bias : bool Whether to add bias parameter in convolution layers. downsample_scales : List[int] List of downsampling scales. nonlinear_activation : str Activation function module name. nonlinear_activation_params : dict Hyperparameters for activation function. pad : str Padding function module name before dilated convolution layer. pad_params : dict Hyperparameters for padding function. """ super().__init__() # for compatibility nonlinear_activation = nonlinear_activation.lower() # initialize parameters initialize(self, init_type) self.layers = nn.LayerList() # check kernel size is valid assert len(kernel_sizes) == 2 assert kernel_sizes[0] % 2 == 1 assert kernel_sizes[1] % 2 == 1 # add first layer self.layers.append( nn.Sequential( getattr(nn, pad)((np.prod(kernel_sizes) - 1) // 2, ** pad_params), nn.Conv1D( in_channels, channels, int(np.prod(kernel_sizes)), bias_attr=bias), get_activation(nonlinear_activation, ** nonlinear_activation_params), )) # add downsample layers in_chs = channels for downsample_scale in downsample_scales: out_chs = min(in_chs * downsample_scale, max_downsample_channels) self.layers.append( nn.Sequential( nn.Conv1D( in_chs, out_chs, kernel_size=downsample_scale * 10 + 1, stride=downsample_scale, padding=downsample_scale * 5, groups=in_chs // 4, bias_attr=bias, ), get_activation(nonlinear_activation, ** nonlinear_activation_params), )) in_chs = out_chs # add final layers out_chs = min(in_chs * 2, max_downsample_channels) self.layers.append( nn.Sequential( nn.Conv1D( in_chs, out_chs, kernel_sizes[0], padding=(kernel_sizes[0] - 1) // 2, bias_attr=bias, ), get_activation(nonlinear_activation, ** nonlinear_activation_params), )) self.layers.append( nn.Conv1D( out_chs, out_channels, kernel_sizes[1], padding=(kernel_sizes[1] - 1) // 2, bias_attr=bias, ), ) def forward(self, x): """Calculate forward propagation. Parameters ---------- x : Tensor Input noise signal (B, 1, T). Returns ---------- List List of output tensors of each layer (for feat_match_loss). """ outs = [] for f in self.layers: x = f(x) outs += [x] return outs class MelGANMultiScaleDiscriminator(nn.Layer): """MelGAN multi-scale discriminator module.""" def __init__( self, in_channels: int=1, out_channels: int=1, scales: int=3, downsample_pooling: str="AvgPool1D", # follow the official implementation setting downsample_pooling_params: Dict[str, Any]={ "kernel_size": 4, "stride": 2, "padding": 1, "exclusive": True, }, kernel_sizes: List[int]=[5, 3], channels: int=16, max_downsample_channels: int=1024, bias: bool=True, downsample_scales: List[int]=[4, 4, 4, 4], nonlinear_activation: str="leakyrelu", nonlinear_activation_params: Dict[str, Any]={"negative_slope": 0.2}, pad: str="Pad1D", pad_params: Dict[str, Any]={"mode": "reflect"}, use_weight_norm: bool=True, init_type: str="xavier_uniform", ): """Initilize MelGAN multi-scale discriminator module. Parameters ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. scales : int Number of multi-scales. downsample_pooling : str Pooling module name for downsampling of the inputs. downsample_pooling_params : dict Parameters for the above pooling module. kernel_sizes : List[int] List of two kernel sizes. The sum will be used for the first conv layer, and the first and the second kernel sizes will be used for the last two layers. channels : int Initial number of channels for conv layer. max_downsample_channels : int Maximum number of channels for downsampling layers. bias : bool Whether to add bias parameter in convolution layers. downsample_scales : List[int] List of downsampling scales. nonlinear_activation : str Activation function module name. nonlinear_activation_params : dict Hyperparameters for activation function. pad : str Padding function module name before dilated convolution layer. pad_params : dict Hyperparameters for padding function. use_causal_conv : bool Whether to use causal convolution. """ super().__init__() # initialize parameters initialize(self, init_type) # for compatibility nonlinear_activation = nonlinear_activation.lower() self.discriminators = nn.LayerList() # add discriminators for _ in range(scales): self.discriminators.append( MelGANDiscriminator( in_channels=in_channels, out_channels=out_channels, kernel_sizes=kernel_sizes, channels=channels, max_downsample_channels=max_downsample_channels, bias=bias, downsample_scales=downsample_scales, nonlinear_activation=nonlinear_activation, nonlinear_activation_params=nonlinear_activation_params, pad=pad, pad_params=pad_params, )) self.pooling = getattr(nn, downsample_pooling)( **downsample_pooling_params) nn.initializer.set_global_initializer(None) # apply weight norm if use_weight_norm: self.apply_weight_norm() # reset parameters self.reset_parameters() def forward(self, x): """Calculate forward propagation. Parameters ---------- x : Tensor Input noise signal (B, 1, T). Returns ---------- List List of list of each discriminator outputs, which consists of each layer output tensors. """ outs = [] for f in self.discriminators: outs += [f(x)] x = self.pooling(x) return outs def apply_weight_norm(self): """Recursively apply weight normalization to all the Convolution layers in the sublayers. """ def _apply_weight_norm(layer): if isinstance(layer, (nn.Conv1D, nn.Conv2D, nn.Conv1DTranspose)): nn.utils.weight_norm(layer) self.apply(_apply_weight_norm) def remove_weight_norm(self): """Recursively remove weight normalization from all the Convolution layers in the sublayers. """ def _remove_weight_norm(layer): try: nn.utils.remove_weight_norm(layer) except ValueError: pass self.apply(_remove_weight_norm) def reset_parameters(self): """Reset parameters. This initialization follows official implementation manner. https://github.com/descriptinc/melgan-neurips/blob/master/mel2wav/modules.py """ # 定义参数为float的正态分布。 dist = paddle.distribution.Normal(loc=0.0, scale=0.02) def _reset_parameters(m): if isinstance(m, nn.Conv1D) or isinstance(m, nn.Conv1DTranspose): w = dist.sample(m.weight.shape) m.weight.set_value(w) self.apply(_reset_parameters) class MelGANInference(nn.Layer): def __init__(self, normalizer, melgan_generator): super().__init__() self.normalizer = normalizer self.melgan_generator = melgan_generator def forward(self, logmel): normalized_mel = self.normalizer(logmel) wav = self.melgan_generator.inference(normalized_mel) return wav