([简体中文](./README_cn.md)|English) # ACS (Audio Content Search) ## Introduction ACS, or Audio Content Search, refers to the problem of getting the key word time stamp from automatically transcribe spoken language (speech-to-text). This demo is an implementation of obtaining the keyword timestamp in the text from a given audio file. It can be done by a single command or a few lines in python using `PaddleSpeech`. Now, the search word in demo is: ``` 我 康 ``` ## Usage ### 1. Installation see [installation](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/install.md). You can choose one way from meduim and hard to install paddlespeech. The dependency refers to the requirements.txt, and install the dependency as follows: ``` pip install -r requirements.txt ``` ### 2. Prepare Input File The input of this demo should be a WAV file(`.wav`), and the sample rate must be the same as the model. Here are sample files for this demo that can be downloaded: ```bash wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav ``` ### 3. run paddlespeech_server Before using the client, it is necessary to start paddlespeech_servers. Here are sample server configuration: ```bash bash demos/audio_content_search/run.sh ``` The logs of the two services will be recorded in 'acs.log' and 'streaming_asr.log' in this configuration. ### 4. Usage - Command Line(Recommended) ```bash # Chinese paddlespeech_client acs --server_ip 127.0.0.1 --port 8490 --input ./zh.wav ``` Usage: ```bash paddlespeech asr --help ``` Arguments: - `input`(required): Audio file to recognize. - `server_ip`: the server ip. - `port`: the server port. - `lang`: the language type of the model. Default: `zh`. - `sample_rate`: Sample rate of the model. Default: `16000`. - `audio_format`: The audio format. Output: ```bash [2022-05-15 15:00:58,185] [ INFO] - acs http client start [2022-05-15 15:00:58,185] [ INFO] - endpoint: http://127.0.0.1:8490/paddlespeech/asr/search [2022-05-15 15:01:03,220] [ INFO] - acs http client finished [2022-05-15 15:01:03,221] [ INFO] - ACS result: {'transcription': '我认为跑步最重要的就是给我带来了身体健康', 'acs': [{'w': '我', 'bg': 0, 'ed': 1.6800000000000002}, {'w': '我', 'bg': 2.1, 'ed': 4.28}, {'w': '康', 'bg': 3.2, 'ed': 4.92}]} [2022-05-15 15:01:03,221] [ INFO] - Response time 5.036084 s. ``` - Python API ```python from paddlespeech.server.bin.paddlespeech_client import ACSClientExecutor acs_executor = ACSClientExecutor() res = acs_executor( input='./zh.wav', server_ip="127.0.0.1", port=8490,) print(res) ``` Output: ```bash [2022-05-15 15:08:13,955] [ INFO] - acs http client start [2022-05-15 15:08:13,956] [ INFO] - endpoint: http://127.0.0.1:8490/paddlespeech/asr/search [2022-05-15 15:08:19,026] [ INFO] - acs http client finished {'transcription': '我认为跑步最重要的就是给我带来了身体健康', 'acs': [{'w': '我', 'bg': 0, 'ed': 1.6800000000000002}, {'w': '我', 'bg': 2.1, 'ed': 4.28}, {'w': '康', 'bg': 3.2, 'ed': 4.92}]} ```